Wastebasket taxon

Last updated

Collage of Protista, probably the best-known wastebasket taxon. The members have little in common apart from being Eukaryota that are not plants, animals or fungi i.e. not complex multicellular organisms. Protist collage 2.jpg
Collage of Protista, probably the best-known wastebasket taxon. The members have little in common apart from being Eukaryota that are not plants, animals or fungi i.e. not complex multicellular organisms.

Wastebasket taxon (also called a wastebin taxon, [1] dustbin taxon [2] or catch-all taxon [3] ) is a term used by some taxonomists to refer to a taxon that has the purpose of classifying organisms that do not fit anywhere else. They are typically defined by either their designated members' often superficial similarity to each other, or their lack of one or more distinct character states or by their not belonging to one or more other taxa. Wastebasket taxa are by definition either paraphyletic or polyphyletic, and are therefore not considered valid taxa under strict cladistic rules of taxonomy. The name of a wastebasket taxon may in some cases be retained as the designation of an evolutionary grade, however.

Contents

The term was coined in a 1985 essay by Steven Jay Gould. [4] [5]

Examples

There are many examples of paraphyletic groups, but true "wastebasket" taxa are those that are known not to, and perhaps not intended to, represent natural groups, but are nevertheless used as convenient groups of organisms. The acritarchs are perhaps the most famous example. Wastebasket taxa are often old (and perhaps not described with the systematic rigour and precision that is possible in the light of accumulated knowledge of diversity) and populous; further characteristics are reviewed by. [6]

Wastebasket taxa in science

Fossil groups that are poorly known due to fragmentary remains are sometimes grouped together on gross morphology or stratigraphy, only later to be found to be wastebasket taxa, such as the crocodile-like Triassic group Rauisuchia. [13]

One of the roles of taxonomists is to identify wastebasket taxa and reclassify the content into more natural units. Sometimes, during taxonomic revisions, a wastebasket taxon can be salvaged after doing thorough research on its members, and then imposing tighter restrictions on what continues to be included. Such techniques "saved" Carnosauria and Megalosaurus . Other times, the taxonomic name contains too much unrelated "baggage" to be successfully salvaged. As such, it is usually dumped in favour of a new, more restrictive name (for example, Rhynchocephalia), or abandoned altogether (for example, Simia ).[ citation needed ]

A related concept is that of form taxon, "wastebasket" groupings that are united by gross morphology. This is often result of a common mode of life, often one that is generalist, leading to generally similar body shapes by convergent evolution.[ citation needed ]

The term wastebasket taxon is sometimes employed in a derogatory fashion to refer to an evolutionary grade taxon.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Clade</span> Group of a common ancestor and all descendants

In biological phylogenetics, a clade, also known as a monophyletic group or natural group, is a grouping of organisms that are monophyletic – that is, composed of a common ancestor and all its lineal descendants – on a phylogenetic tree. In the taxonomical literature, sometimes the Latin form cladus is used rather than the English form. Clades are the fundamental unit of cladistics, a modern approach to taxonomy adopted by most biological fields.

<span class="mw-page-title-main">Paraphyly</span> Type of taxonomic group

Paraphyly is a taxonomic term describing a grouping that consists of the grouping's last common ancestor and some but not all of its descendant lineages. The grouping is said to be paraphyletic with respect to the excluded subgroups. In contrast, a monophyletic grouping includes a common ancestor and all of its descendants.

In biology, taxonomy is the scientific study of naming, defining (circumscribing) and classifying groups of biological organisms based on shared characteristics. Organisms are grouped into taxa and these groups are given a taxonomic rank; groups of a given rank can be aggregated to form a more inclusive group of higher rank, thus creating a taxonomic hierarchy. The principal ranks in modern use are domain, kingdom, phylum, class, order, family, genus, and species. The Swedish botanist Carl Linnaeus is regarded as the founder of the current system of taxonomy, as he developed a ranked system known as Linnaean taxonomy for categorizing organisms and binomial nomenclature for naming organisms.

<span class="mw-page-title-main">Ungulate</span> Group of animals that walk on the tips of their toes or hooves

Ungulates are members of the diverse clade Euungulata, which primarily consists of large mammals with hooves. Once part of the clade "Ungulata" along with the clade Paenungulata, "Ungulata" has since been determined to be a polyphyletic and thereby invalid clade based on molecular data. As a result, true ungulates had since been reclassified to the newer clade Euungulata in 2001 within the clade Laurasiatheria while Paenungulata has been reclassified to a distant clade Afrotheria. Living ungulates are divided into two orders: Perissodactyla including equines, rhinoceroses, and tapirs; and Artiodactyla including cattle, antelope, pigs, giraffes, camels, sheep, deer, and hippopotamuses, among others. Cetaceans such as whales, dolphins, and porpoises are also classified as artiodactyls, although they do not have hooves. Most terrestrial ungulates use the hoofed tips of their toes to support their body weight while standing or moving. Two other orders of ungulates, Notoungulata and Litopterna, both native to South America, became extinct at the end of the Pleistocene, around 12,000 years ago.

<span class="mw-page-title-main">Insectivora</span> Now abandoned biological grouping

The order Insectivora is a now-abandoned biological grouping within the class of mammals. Some species have now been moved out, leaving the remaining ones in the order Eulipotyphla within the larger clade Laurasiatheria, which makes up one of the basal clades of placental mammals.

<span class="mw-page-title-main">Taxon</span> Grouping of biological populations

In biology, a taxon is a group of one or more populations of an organism or organisms seen by taxonomists to form a unit. Although neither is required, a taxon is usually known by a particular name and given a particular ranking, especially if and when it is accepted or becomes established. It is very common, however, for taxonomists to remain at odds over what belongs to a taxon and the criteria used for inclusion, especially in the context of rank-based ("Linnaean") nomenclature. If a taxon is given a formal scientific name, its use is then governed by one of the nomenclature codes specifying which scientific name is correct for a particular grouping.

<span class="mw-page-title-main">Afrotheria</span> Clade of mammals containing elephants and elephant shrews

Afrotheria is a superorder of mammals, the living members of which belong to groups that are either currently living in Africa or of African origin: golden moles, elephant shrews, otter shrews, tenrecs, aardvarks, hyraxes, elephants, sea cows, and several extinct clades. Most groups of afrotheres share little or no superficial resemblance, and their similarities have only become known in recent times because of genetics and molecular studies. Many afrothere groups are found mostly or exclusively in Africa, reflecting the fact that Africa was an island continent from the Cretaceous until the early Miocene around 20 million years ago, when Afro-Arabia collided with Eurasia.

<span class="mw-page-title-main">Paenungulata</span> Clade of mammals including elephants, hyraxes, and sea cows

Paenungulata is a clade of "sub-ungulates", which groups three extant mammal orders: Proboscidea, Sirenia, and Hyracoidea (hyraxes). At least two more possible orders are known only as fossils, namely Embrithopoda and Desmostylia.

Evolutionary taxonomy, evolutionary systematics or Darwinian classification is a branch of biological classification that seeks to classify organisms using a combination of phylogenetic relationship, progenitor-descendant relationship, and degree of evolutionary change. This type of taxonomy may consider whole taxa rather than single species, so that groups of species can be inferred as giving rise to new groups. The concept found its most well-known form in the modern evolutionary synthesis of the early 1940s.

<span class="mw-page-title-main">Dinosaur classification</span> Various classifications of Dinosauria

Dinosaur classification began in 1842 when Sir Richard Owen placed Iguanodon, Megalosaurus, and Hylaeosaurus in "a distinct tribe or suborder of Saurian Reptiles, for which I would propose the name of Dinosauria." In 1887 and 1888 Harry Seeley divided dinosaurs into the two orders Saurischia and Ornithischia, based on their hip structure. These divisions have proved remarkably enduring, even through several seismic changes in the taxonomy of dinosaurs.

<span class="mw-page-title-main">Tetanurae</span> Clade containing most theropod dinosaurs

Tetanurae is a clade that includes most theropod dinosaurs, including megalosauroids, allosauroids, tyrannosauroids, ornithomimosaurs, compsognathids and maniraptorans. Tetanurans are defined as all theropods more closely related to modern birds than to Ceratosaurus and contain the majority of predatory dinosaur diversity. Tetanurae likely diverged from its sister group, Ceratosauria, during the late Triassic. Tetanurae first appeared in the fossil record by the Early Jurassic about 190 mya and by the Middle Jurassic had become globally distributed.

<span class="mw-page-title-main">Laurasiatheria</span> Clade of mammals

Laurasiatheria is a superorder of placental mammals that groups together true insectivores (eulipotyphlans), bats (chiropterans), carnivorans, pangolins (pholidotes), even-toed ungulates (artiodactyls), odd-toed ungulates (perissodactyls), and all their extinct relatives. From systematics and phylogenetic perspectives, it is subdivided into order Eulipotyphla and clade Scrotifera. It is a sister group to Euarchontoglires with which it forms the magnorder Boreoeutheria. Laurasiatheria was discovered on the basis of the similar gene sequences shared by the mammals belonging to it; no anatomical features have yet been found that unite the group, although a few have been suggested such as a small coracoid process, a simplified hindgut and allantoic vessels that are large to moderate in size. The Laurasiatheria clade is based on DNA sequence analyses and retrotransposon presence/absence data. The superorder originated on the northern supercontinent of Laurasia, after it split from Gondwana when Pangaea broke up. Its last common ancestor is supposed to have lived between ca. 76 to 90 million years ago.

In phylogenetics, a sister group or sister taxon, also called an adelphotaxon, comprises the closest relative(s) of another given unit in an evolutionary tree.

<span class="mw-page-title-main">Evolutionary grade</span> Non-monophyletic grouping of organisms united by morphological or physiological characteristics

A grade is a taxon united by a level of morphological or physiological complexity. The term was coined by British biologist Julian Huxley, to contrast with clade, a strictly phylogenetic unit.

<span class="mw-page-title-main">Afroinsectiphilia</span> Clade of mammals

The Afroinsectiphilia is a clade that has been proposed based on the results of recent molecular phylogenetic studies. Many of the taxa within it were once regarded as part of the order Insectivora, but Insectivora is now considered to be polyphyletic and obsolete. This proposed classification is based on molecular studies only, and there is no morphological evidence for it.

<span class="mw-page-title-main">Tricholomataceae</span> Family of fungi

The Tricholomataceae are a large family of fungi within the order Agaricales. Originally a classic "wastebasket taxon", the family included any white-, yellow-, or pink-spored genera in the Agaricales not already classified as belonging to e.g. the Amanitaceae, Lepiotaceae, Hygrophoraceae, Pluteaceae, or Entolomataceae.

Phylogenetic nomenclature is a method of nomenclature for taxa in biology that uses phylogenetic definitions for taxon names as explained below. This contrasts with the traditional method, by which taxon names are defined by a type, which can be a specimen or a taxon of lower rank, and a description in words. Phylogenetic nomenclature is regulated currently by the International Code of Phylogenetic Nomenclature (PhyloCode).

<span class="mw-page-title-main">Arctocyonidae</span> Extinct family of mammals

Arctocyonidae is as an extinct family of unspecialized, primitive mammals with more than 20 genera. Animals assigned to this family were most abundant during the Paleocene, but extant from the late Cretaceous to the early Eocene . Like most early mammals, their actual relationships are very difficult to resolve. No Paleocene fossil has been unambiguously assigned to any living order of placental mammals, and many genera resemble each other: generalized robust, not very agile animals with long tails and all-purpose chewing teeth, living in warm closed-canopy forests with many niches left vacant by the K-T extinction.

<span class="mw-page-title-main">Phenacodontidae</span> Family of mammals

Phenacodontidae is an extinct family of large herbivorous mammals traditionally placed in the “wastebasket taxon” Condylarthra, which may instead represent early-stage perissodactyls. They lived from the late early Paleocene to early middle Eocene and their fossil remains have been found in North America and Europe. The only unequivocal Asian phenacodontid is Lophocion asiaticus.

<span class="mw-page-title-main">Ancodonta</span> Infraorder of mammals

Ancodonta is an infraorder of artiodactyl ungulates including modern hippopotamus and all mammals closer to hippos than to cetaceans (whales). Ancodonts first appeared in the Middle Eocene, with some of the earliest representatives found in fossil deposits in Southeast Asia. Throughout their evolutionary history they have occupied different browsing and grazing niches in North America, Eurasia and Africa. The last continent is notable as they were among the first laurasiatherian mammals to have migrated to Africa from Europe, where they competed with the native afrothere herbivores for the same niches. Of the nearly 50 genera that have existed, only two of them are extant – Choeropsis and Hippopotamus. The interrelationships within the ancodonts has been contended. The traditional notion is that there at minimum two families Anthracotheriidae and Hippopotamidae and were merely sister taxa. However many detailed research of the dentition among ancodonts, as well as how some anthracotheres were similar to hippos in appearance, lead the current consensus where Anthracotheriidae is paraphyletic to Hippopotamidae. Among the anthracotheres members of Bothriodontinae are among the closest to the ancestry of hippos, with the Oligocene aged Epirigenys from Lokon, Turkana, Kenya being the sister taxon to hippos. In response of this many similar clade names have been used for this clade.

References

  1. Friedman, M.; Brazeau, M.D (7 February 2011). "Sequences, stratigraphy and scenarios: what can we say about the fossil record of the earliest tetrapods?". Proceedings of the Royal Society . 278 (1704): 432–439. doi:10.1098/rspb.2010.1321. PMC   3013411 . PMID   20739322.
  2. Hallam, A.; Wignall, P. B. (1997). Mass extinctions and their aftermath. Oxford [England]: Oxford University Press. p. 107. ISBN   978-0-19-854916-1.
  3. Monks, N. (July 2002). "Cladistic analysis of a problematic ammonite group: the Hamitidae (Cretaceous, Albian-Turonian) and proposals for new cladistic terms". Palaeontology. 45 (4): 689–707. Bibcode:2002Palgy..45..689M. doi: 10.1111/1475-4983.00255 .
  4. Gould, S. J. (1985). "Treasures in a taxonomic wastebasket". Natural History. 94: 22–33.
  5. Plotnick, Roy E.; Wagner, Peter J. (2006). "Round up the Usual Suspects: Common Genera in the Fossil Record and the Nature of Wastebasket Taxa". Paleobiology. 32 (1): 126–146. Bibcode:2006Pbio...32..126P. doi:10.1666/04056.1. JSTOR   4096821. S2CID   86606882.
  6. Plotnick, Roy E.; Wagner, Peter J. (2006). "Round up the Usual Suspects: Common Genera in the Fossil Record and the Nature of Wastebasket Taxa". Paleobiology. 32 (1): 126–146. Bibcode:2006Pbio...32..126P. doi:10.1666/04056.1. JSTOR   4096821. S2CID   86606882.
  7. Chase, Mark W.; Sue Zmarzty; M. Dolores Lledó; Kenneth J. Wurdack; Susan M. Swensen; Michael F. Fay (2002). "When in doubt, put it in Flacourtiaceae: a molecular phylogenetic analysis based on plastid rbcL DNA sequences". Kew Bulletin . 57 (1): 141–181. Bibcode:2002KewBu..57..141C. doi:10.2307/4110825. JSTOR   4110825.
  8. Whittaker RH (January 1969). "New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms". Science. 163 (3863): 150–60. Bibcode:1969Sci...163..150W. CiteSeerX   10.1.1.403.5430 . doi:10.1126/science.163.3863.150. PMID   5762760.
  9. Young AM (2002). "Brief notes on the status of Family Hygrophoraceae Lotsy". Australasian Mycologist. 21 (3): 114–6.
  10. Naish, Darren (8 August 2013). "Phenacodontidae, I feel like I know you". Tetrapod Zoology. Scientific American.
  11. Cooper, Lisa Noelle; Seiffert, Erik R.; Clementz, Mark; Madar, Sandra I.; Bajpai, Sunil; Hussain, S. Taseer; Thewissen, J. G. M. (2014). "Anthracobunids from the Middle Eocene of India and Pakistan Are Stem Perissodactyls". PLOS ONE. 9 (10): e109232. Bibcode:2014PLoSO...9j9232C. doi: 10.1371/journal.pone.0109232 . PMC   4189980 . PMID   25295875.
  12. Moore, A.J.; Upchurch, P.; Barrett, P.M.; Clark, J.M.; Xing, X. (2020). "Osteology of Klamelisaurus gobiensis (Dinosauria, Eusauropoda) and the evolutionary history of Middle–Late Jurassic Chinese sauropods". Journal of Systematic Palaeontology. 18 (16): 1299–1393. Bibcode:2020JSPal..18.1299M. doi:10.1080/14772019.2020.1759706. S2CID   219749618.
  13. Nesbitt, Sterling J. (2003). "Arizonasaurus and its implications for archosaur divergence". Proceedings of the Royal Society B: Biological Sciences. 270 (Suppl 2): S234-7. doi:10.1098/rsbl.2003.0066. PMC   1809943 . PMID   14667392.