The term phylogenetic niche conservatism has seen increasing use in recent years[ when? ] in the scientific literature, though the exact definition has been a matter of some contention. [1] Fundamentally, phylogenetic niche conservatism refers to the tendency of species to retain their ancestral traits. When defined as such, phylogenetic niche conservatism is therefore nearly synonymous with phylogenetic signal. The point of contention is whether or not "conservatism" refers simply to the tendency of species to resemble their ancestors, or implies that "closely related species are more similar than expected based on phylogenetic relationships". [1] If the latter interpretation is employed, then phylogenetic niche conservatism can be seen as an extreme case of phylogenetic signal, and implies that the processes which prevent divergence are in operation in the lineage under consideration. Despite efforts by Jonathan Losos to end this habit, however, the former interpretation appears to frequently motivate scientific research. In this case, phylogenetic niche conservatism might best be considered a form of phylogenetic signal reserved for traits with broad-scale ecological ramifications (i.e. related to the Hutchinsonian niche). [2] Thus, phylogenetic niche conservatism is usually invoked with regards to closely related species occurring in similar environments. [3]
According to a recent review, [2] the term niche conservatism traces its roots to a book on comparative methods in evolutionary biology. [4] However, and as these authors also note, the idea is much older. For instance, Darwin observed in the Origin of Species [5] that species in the same genus tend to resemble one another. This was not a matter of chance, as the entire Linnean taxonomy system is based on classifying species into hierarchically nested groups, e.g. a genus is (and was particularly at the time of Darwin's writing) by definition a collection of similar species. In modern times this pattern has come to be referred to as phylogenetic signal, "the tendency of related species to resemble each other more than species drawn at random from the same tree [6] ". Methods such as Abouheif’s C, [7] Pagel's lambda, [8] Blomberg's K, [9] and Moran's I [10] have been employed to test the statistical significance of the pattern. With regards to the term phylogenetic niche conservatism, many authors[ citation needed ] have taken a significant result here—i.e. that phylogenetic information can help "predict" species traits—to be evidence of phylogenetic niche conservatism. Other authors, however, advocate that such a pattern should be expected (i.e. follow from "Descent with modification" [5] ) and, accordingly, only in instances where species resemble each other more than expected based on their phylogenetic relationships should one invoke the term phylogenetic niche conservatism.[ citation needed ] To take a single statistical test as an example, an unconstrained Brownian motion evolution process will result in a Blomberg's K value of 1; the strict school of thought would only accept a K > 1 as evidence of phylogenetic niche conservatism.
In an influential paper, Wiens and Donoghue [3] laid out how phylogenetic niche conservatism might help explain the latitudinal diversity gradient. While support for the hypothesis that niche conservatism drives latitudinally structured variation in species richness has been found in some clades, [11] overall, phylogenetic niche conservatism has not received strong support as the underlying cause responsible for variation in how many species occur in a given habitat. [12] [13] It has, however, found considerable support as a factor driving which species occur in a given habitat. [13] [14] That is, the study of phylogenetic niche conservatism by itself has not put an end to long-standing debate over what drives the latitudinal diversity gradient across clades, but within specific clades and across specific environmental gradients (as opposed to latitude sensu stricto), it has found support as a factor influencing which lineages are able to persist. [15] [16]
In evolutionary biology, adaptive radiation is a process in which organisms diversify rapidly from an ancestral species into a multitude of new forms, particularly when a change in the environment makes new resources available, alters biotic interactions or opens new environmental niches. Starting with a single ancestor, this process results in the speciation and phenotypic adaptation of an array of species exhibiting different morphological and physiological traits. The prototypical example of adaptive radiation is finch speciation on the Galapagos, but examples are known from around the world.
Ecology is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystems, and biosphere level. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology and natural history. Ecology is a branch of biology, and it is not synonymous with environmentalism.
In ecology, a niche is the match of a species to a specific environmental condition. It describes how an organism or population responds to the distribution of resources and competitors and how it in turn alters those same factors. "The type and number of variables comprising the dimensions of an environmental niche vary from one species to another [and] the relative importance of particular environmental variables for a species may vary according to the geographic and biotic contexts".
Anolis is a genus of anoles, iguanian lizards in the family Dactyloidae, native to the Americas. With more than 425 species, it represents the world's most species-rich amniote tetrapod genus, although many of these have been proposed to be moved to other genera, in which case only about 45 Anolis species remain. Previously, it was classified under the family Polychrotidae that contained all the anoles, as well as Polychrus, but recent studies place it in the Dactyloidae.
Allopatric speciation – also referred to as geographic speciation, vicariant speciation, or its earlier name the dumbbell model – is a mode of speciation that occurs when biological populations become geographically isolated from each other to an extent that prevents or interferes with gene flow.
In ecology, the competitive exclusion principle, sometimes referred to as Gause's law, is a proposition named for Georgy Gause that two species which compete for the same limited resource cannot coexist at constant population values. When one species has even the slightest advantage over another, the one with the advantage will dominate in the long term. This leads either to the extinction of the weaker competitor or to an evolutionary or behavioral shift toward a different ecological niche. The principle has been paraphrased in the maxim "complete competitors can not coexist".
Macroecology is the subfield of ecology that deals with the study of relationships between organisms and their environment at large spatial scales to characterise and explain statistical patterns of abundance, distribution and diversity. The term was coined in a small monograph published in Spanish in 1971 by Guillermo Sarmiento and Maximina Monasterio, two Venezuelan researchers working in tropical savanna ecosystems and later used by James Brown of the University of New Mexico and Brian Maurer of Michigan State University in a 1989 paper in Science.
Evolutionary ecology lies at the intersection of ecology and evolutionary biology. It approaches the study of ecology in a way that explicitly considers the evolutionary histories of species and the interactions between them. Conversely, it can be seen as an approach to the study of evolution that incorporates an understanding of the interactions between the species under consideration. The main subfields of evolutionary ecology are life history evolution, sociobiology, the evolution of interspecific interactions and the evolution of biodiversity and of ecological communities.
Character displacement is the phenomenon where differences among similar species whose distributions overlap geographically are accentuated in regions where the species co-occur, but are minimized or lost where the species' distributions do not overlap. This pattern results from evolutionary change driven by biological competition among species for a limited resource. The rationale for character displacement stems from the competitive exclusion principle, also called Gause's Law, which contends that to coexist in a stable environment two competing species must differ in their respective ecological niche; without differentiation, one species will eliminate or exclude the other through competition.
A functional group is merely a set of species, or collection of organisms, that share alike characteristics within a community. Ideally, the lifeforms would perform equivalent tasks based on domain forces, rather than a common ancestor or evolutionary relationship. This could potentially lead to analogous structures that overrule the possibility of homology. More specifically, these beings produce resembling effects to external factors of an inhabiting system. Due to the fact that a majority of these creatures share an ecological niche, it is practical to assume they require similar structures in order to achieve the greatest amount of fitness. This refers to such as the ability to successfully reproduce to create offspring, and furthermore sustain life by avoiding alike predators and sharing meals.
Species richness, or biodiversity, increases from the poles to the tropics for a wide variety of terrestrial and marine organisms, often referred to as the latitudinal diversity gradient (LDG). The LDG is one of the most widely recognized patterns in ecology. The LDG has been observed to varying degrees in Earth's past. A parallel trend has been found with elevation, though this is less well-studied.
In ecology, beta diversity is the ratio between regional and local species diversity. The term was introduced by R. H. Whittaker together with the terms alpha diversity (α-diversity) and gamma diversity (γ-diversity). The idea was that the total species diversity in a landscape (γ) is determined by two different things, the mean species diversity at the local level (α) and the differentiation among local sites (β). Other formulations for beta diversity include "absolute species turnover", "Whittaker's species turnover" and "proportional species turnover".
Phylogenetic comparative methods (PCMs) use information on the historical relationships of lineages (phylogenies) to test evolutionary hypotheses. The comparative method has a long history in evolutionary biology; indeed, Charles Darwin used differences and similarities between species as a major source of evidence in The Origin of Species. However, the fact that closely related lineages share many traits and trait combinations as a result of the process of descent with modification means that lineages are not independent. This realization inspired the development of explicitly phylogenetic comparative methods. Initially, these methods were primarily developed to control for phylogenetic history when testing for adaptation; however, in recent years the use of the term has broadened to include any use of phylogenies in statistical tests. Although most studies that employ PCMs focus on extant organisms, many methods can also be applied to extinct taxa and can incorporate information from the fossil record.
Ecological fitting is "the process whereby organisms colonize and persist in novel environments, use novel resources or form novel associations with other species as a result of the suites of traits that they carry at the time they encounter the novel condition". It can be understood as a situation in which a species' interactions with its biotic and abiotic environment seem to indicate a history of coevolution, when in actuality the relevant traits evolved in response to a different set of biotic and abiotic conditions.
Catherine H. Graham is a team leader and senior scientist working on the Biodiversity & Conservation Biology, and the Spatial Evolutionary Ecology research units at the Swiss Federal Institute for Forest, Snow and Landscape Research WSL. From 2003 to 2017 she was an Assistant, Associate, or Full Professor of Ecology and Evolution at the Stony Brook University, and since her appointment at the WSL in 2017 she has maintained adjunct status there. She received both her M.S. degree (1995) and her Ph.D. (2000) from the University of Missouri at St. Louis, and did post-doctoral training at the Jet Propulsion Laboratory and the University of California, Berkeley. She studies biogeography, conservation biology, and ecology. Catherine H. Graham is most noted for her analysis of statistical models to describe species' distributions. This work with Jane Elith is useful in determining changes in biodiversity resulting from human activities. Her paper on niche conservatism with John J. Wiens is also highly cited. They focused on how species' retention of ancestral traits may limit geographic range expansion. In many of her papers, she has sought to unite ecology and evolutionary biology to derive a better understanding of the processes driving species diversity patterns. In particular, she and Paul Fine laid out a framework for interpreting community assembly processes from a phylogenetic approach to quantifying beta diversity.
Leslie Jane Rissler is an American biologist best known for her work on amphibian and reptile biogeography, evolutionary ecology, systematics, and conservation, and for her strong advocacy of improving the public’s understanding and appreciation of evolution. She is currently Program Officer in the Evolutionary Processes Cluster of the Division of Environmental Biology and Directorate of Biological Sciences at the National Science Foundation.
A biological rule or biological law is a generalized law, principle, or rule of thumb formulated to describe patterns observed in living organisms. Biological rules and laws are often developed as succinct, broadly applicable ways to explain complex phenomena or salient observations about the ecology and biogeographical distributions of plant and animal species around the world, though they have been proposed for or extended to all types of organisms. Many of these regularities of ecology and biogeography are named after the biologists who first described them.
Priyanga Amarasekare is a Professor of Ecology and Evolutionary Biology at the University of California, Los Angeles (UCLA) and distinguished Fellow of the Ecological Society of America (ESA). Her research is in the fields of mathematical biology and trophic ecology, with a focus on understanding patterns of biodiversity, species dispersal and the impacts of climate change. She received a 2021 Guggenheim Fellowship.
Tadashi Fukami is an associate Professor of Biology and community ecologist at Stanford University. He is currently the head of Fukami Lab which is a community ecology research group that focuses on "historical contingency in the assembly of ecological communities." Fukami is an elected Fellow of the Ecological Society of America.
Phylogenetic signal is an evolutionary and ecological term, that describes the tendency or the pattern of related biological species to mimic each other more than any other species, that is randomly picked from the same phylogenetic tree.
{{cite book}}
: External link in |edition=
(help)