Aquatic animal

Last updated

Longfin sculpin (Jordania zonope) Jordania zonope.jpg
Longfin sculpin (Jordania zonope)
Sperm whales, an example of air-breathing aquatic animals. Mother and baby sperm whale.jpg
Sperm whales, an example of air-breathing aquatic animals.

An aquatic animal is any animal, whether vertebrate or invertebrate, that lives in bodies of water for all or most of its lifetime. [1] Aquatic animals generally conduct gas exchange in water by extracting dissolved oxygen via specialised respiratory organs called gills, through the skin or across enteral mucosae, although some are evolved from terrestrial ancestors that re-adapted to aquatic environments (e.g. marine reptiles and marine mammals), in which case they actually use lungs to breathe air and are essentially holding their breath when living in water. Some species of gastropod mollusc, such as the eastern emerald sea slug, are even capable of kleptoplastic photosynthesis via endosymbiosis with ingested yellow-green algae.

Contents

Almost all aquatic animals reproduce in water, either oviparously or viviparously, and many species routinely migrate between different water bodies during their life cycle. Some animals have fully aquatic life stages (typically as eggs and larvae), while as adults they become terrestrial or semi-aquatic after undergoing metamorphosis. Such examples include amphibians such as frogs, many flying insects such as mosquitoes, mayflies, dragonflies, damselflies and caddisflies, as well as some species of cephalopod molluscs such as the algae octopus (whose larvae are completely planktonic, but adults are highly terrestrial).

Aquatic animals are a diverse polyphyletic group based purely on the natural environments they inhabit, and many morphological and behavioral similarities among them are the result of convergent evolution. They are distinct from terrestrial and semi-aquatic animals, who can survive away from water bodies, while aquatic animals often die of dehydration or hypoxia after prolonged removal out of water due to either gill failure or compressive asphyxia by their own body weight (as in the case of whale beaching). Along with aquatic plants, algae and microbes, aquatic animals form the food webs of various marine, brackish and freshwater aquatic ecosystems.

Description

The four main types of aquatic animals: neustons, planktons, nektons and benthos Neuston, Plankton, Nekton, Benthos.jpg
The four main types of aquatic animals: neustons, planktons, nektons and benthos

The term aquatic can be applied to animals that live in either fresh water or salt water. However, the adjective marine is most commonly used for animals that live in saltwater or sometimes brackish water, i.e. in oceans, shallow seas, estuaries, etc.

Aquatic animals can be separated into four main groups according to their positions within the water column.

Aquatic animals (especially freshwater animals) are often of special concern to conservationists because of the fragility of their environments. Aquatic animals are subject to pressure from overfishing, destructive fishing, marine pollution, hunting, and climate change. Many habitats are at risk which puts aquatic animals at risk as well. [2] Aquatic animals play an important role in the world. The biodiversity of aquatic animals provide food, energy, and even jobs. [3]

Freshwater aquatic animals

Fresh water creates a hypotonic environment for aquatic organisms. This is problematic for organisms with pervious skins and gills, whose cell membranes may rupture if excess water is not excreted. Some protists accomplish this using contractile vacuoles, while freshwater fish excrete excess water via the kidney. [4] Although most aquatic organisms have a limited ability to regulate their osmotic balance and therefore can only live within a narrow range of salinity, diadromous fish have the ability to migrate between fresh and saline water bodies. During these migrations they undergo changes to adapt to the surroundings of the changed salinities; these processes are hormonally controlled. The European eel (Anguilla anguilla) uses the hormone prolactin, [5] while in salmon (Salmo salar) the hormone cortisol plays a key role during this process. [6]

Freshwater molluscs include freshwater snails and freshwater bivalves. Freshwater crustaceans include freshwater crabs and crayfish. [7] [8]

Air-breathing aquatic animals

In addition to water-breathing animals (e.g. fish, most molluscs, etc.), the term "aquatic animal" can be applied to air-breathing marine mammals such as those in the orders Cetacea (whales, dolphins and porpoises) and Sirenia (dugongs and manatees), who are too evolved for aquatic life to survive on land at all, as well as the highly aquatically adapted but land-dwelling pinnipeds (true seals, eared seals and the walrus). The term "aquatic mammal" is also applied to riparian mammals like the river otter (Lontra canadensis) and beavers (family Castoridae), although they are technically semiaquatic or amphibious. [9] Unlike the more common gill-bearing aquatic animals, these air-breathing animals have lungs (which are homologous to the swim bladders in fish) and need to surface periodically to change breaths, but their ranges are not restricted by oxygen saturation in water, although salinity changes can still affect their physiology to an extent.

There are also reptilian animals that are highly evolved for life in water, although most extant aquatic reptiles, including crocodilians, turtles, water snakes and the marine iguana, are technically semi-aquatic rather than fully aquatic, and most of them only inhabit freshwater ecosystems. Marine reptiles were once a dominant group of ocean predators that altered the marine fauna during the Mesozoic, although most of them died out during the Cretaceous-Paleogene extinction event and now only the sea turtles (the only remaining descendants of the Mesozoic marine reptiles) and sea snakes (which only evolved during the Cenozoic) remain fully aquatic in saltwater ecosystems.

Amphibians, while still requiring access to water to inhabit, are separated into their own ecological classification. The majority of amphibians (class Amphibia) have a fully aquatic larval form known as tadpoles, but those from the order Anura (frogs and toads) and some of the order Urodela (salamanders) will metamorphosize into lung-bearing and sometimes skin-breathing terrestrial adults, and most of them may return to the water to breed.

Certain amphibious fish also evolved to breathe air to survive oxygen-deprived waters, such as lungfishes, mudskippers, labyrinth fishes, bichirs, arapaima and walking catfish. Their abilities to breathe atmospheric oxygen are achieved via skin-breathing, enteral respiration, or specialized organs such as the labyrinth organ and even primitive lungs (lungfish and bichirs)

Most molluscs have gills, while some freshwater gastropods have evolved lungs (e.g. Planorbidae ) and some amphibious ones have both (e.g. Ampullariidae ). [9] Many species of octopus have cutaneous respiration that allows them to survive out of water at the intertidal zones, with at least one species ( Abdopus aculeatus ) being routinely terrestrial hunting crabs among the tidal pools of rocky shores.

Importance

Environmental

Aquatic animals play an important role for the environment as indicator species, as they are particularly sensitive to deterioration in water quality and climate change. Biodiversity of aquatic animals is also an important factor for the sustainability of aquatic ecosystems as it reflects the food web status and the carrying capacity of the local habitats. [10] Many migratory aquatic animals, predominantly forage fish (such as sardines) and euryhaline fish (such as salmon), are keystone species that accumulate and transfer biomass between marine, freshwater and even to terrestrial ecosystems.

Importance to humans

Global capture fisheries and aquaculture production reported by FAO, 1990-2030 Global capture fisheries and aquaculture production, 1990-2030.svg
Global capture fisheries and aquaculture production reported by FAO, 1990–2030

Aquatic animals are important to humans as a source of food (i.e. seafood) and as raw material for fodders (e.g. feeder fish and fish meal), pharmaceuticals (e.g. fish oil, krill oil, cytarabine and bryostatin) and various industrial chemicals (e.g. chitin and bioplastics, formerly also whale oil). The harvesting of aquatic animals, especially finfish, shellfish and inkfish, provides direct and indirect employment to the livelihood of over 500 million people in developing countries, and both the fishing industry and aquaculture make up a major component of the primary sector of the economy.

Total fish production in 2016 reached an all-time high of 171 million tonnes, of which 88% was utilized for direct human consumption, resulting in a record-high per capita consumption of 20.3 kg (45 lb). [11] Since 1961 the annual global growth in fish consumption has been twice as high as population growth. While annual growth of aquaculture has declined in recent years, significant double-digit growth is still recorded in some countries, particularly in Africa and Asia. [11] Overfishing and destructive fishing practices fuelled by commercial incentives have reduced fish stocks beyond sustainable levels in many world regions, causing the fishery industry to maladaptively fishing down the food web. [12] [13] It was estimated in 2014 that global fisheries were adding US$270 billion a year to global GDP, but by full implementation of sustainable fishing, that figure could rise by as much as US$50 billion. [14]

In addition to commercial and subsistence fishing, recreational fishing is a popular pastime in both developed and developing countries, [15] and the manufacturing, retail and service sectors associated with recreational fishing have together conglomerated into a multibillion-dollar industry. [16] In 2014 alone, around 11 million saltwater sportfishing participants the United States generated USD$58 billion of retail revenue (comparatively, commercial fishing generated USD$141 billion that same year). [17] In 2021, the total revenue of recreational fishing industry in the United States overtook those of Lockheed Martin, Intel, Chrysler and Google; [18] and together with personnel salary (about USD$39.5 billion) and various tolls and fees collected by fisheries management agencies (about USD$17 billion), contributed almost USD$129 billion to the GDP of the United States, roughly 1% of the national GDP and more than the economic sum of 17 U.S. states. [18]

Aquatic animals also have cultural significance in human societies by serving as the subjects of arts, literature and heraldry, as well as providing educational and recreational values in the form of aquaria and oceanaria.

See also

Related Research Articles

<span class="mw-page-title-main">Aquaculture</span> Farming of aquatic organisms

Aquaculture, also known as aquafarming, is the controlled cultivation ("farming") of aquatic organisms such as fish, crustaceans, mollusks, algae and other organisms of value such as aquatic plants. Aquaculture involves cultivating freshwater, brackish water and saltwater populations under controlled or semi-natural conditions, and can be contrasted with commercial fishing, which is the harvesting of wild fish. Aquaculture is also a practice used for restoring and rehabilitating marine and freshwater ecosystems. Mariculture, commonly known as marine farming, is aquaculture in seawater habitats and lagoons, as opposed to freshwater aquaculture. Pisciculture is a type of aquaculture that consists of fish farming to obtain fish products as food.

<span class="mw-page-title-main">Brackish water</span> Water with salinity between freshwater and seawater

Brackish water, sometimes termed brack water, is water occurring in a natural environment that has more salinity than freshwater, but not as much as seawater. It may result from mixing seawater and fresh water together, as in estuaries, or it may occur in brackish fossil aquifers. The word comes from the Middle Dutch root brak. Certain human activities can produce brackish water, in particular civil engineering projects such as dikes and the flooding of coastal marshland to produce brackish water pools for freshwater prawn farming. Brackish water is also the primary waste product of the salinity gradient power process. Because brackish water is hostile to the growth of most terrestrial plant species, without appropriate management it can be damaging to the environment.

<span class="mw-page-title-main">Fishing</span> Activity of trying to catch fish

Fishing is the activity of trying to catch fish. Fish are often caught as wildlife from the natural environment, but may also be caught from stocked bodies of water such as ponds, canals, park wetlands and reservoirs. Fishing techniques include hand-gathering, spearing, netting, angling, shooting and trapping, as well as more destructive and often illegal techniques such as electrocution, blasting and poisoning.

<span class="mw-page-title-main">Fish farming</span> Raising fish commercially in enclosures

Fish farming or pisciculture involves commercial breeding of fish, most often for food, in fish tanks or artificial enclosures such as fish ponds. It is a particular type of aquaculture, which is the controlled cultivation and harvesting of aquatic animals such as fish, crustaceans, molluscs and so on, in natural or pseudo-natural environments. A facility that releases juvenile fish into the wild for recreational fishing or to supplement a species' natural numbers is generally referred to as a fish hatchery. Worldwide, the most important fish species produced in fish farming are carp, catfish, salmon and tilapia.

<span class="mw-page-title-main">Short-finned eel</span> Species of fish

The short-finned eel, also known as the shortfin eel, is one of the 15 species of eel in the family Anguillidae. It is native to the lakes, dams and coastal rivers of south-eastern Australia, New Zealand, and much of the South Pacific, including New Caledonia, Norfolk Island, Lord Howe Island, Tahiti, and Fiji.

<span class="mw-page-title-main">Fishery</span> Raising or harvesting fish

Fishery can mean either the enterprise of raising or harvesting fish and other aquatic life or, more commonly, the site where such enterprise takes place. Commercial fisheries include wild fisheries and fish farms, both in freshwater waterbodies and the oceans. About 500 million people worldwide are economically dependent on fisheries. 171 million tonnes of fish were produced in 2016, but overfishing is an increasing problem, causing declines in some populations.

<span class="mw-page-title-main">Sustainable fishery</span> Sustainable fishing for the long term fishing

A conventional idea of a sustainable fishery is that it is one that is harvested at a sustainable rate, where the fish population does not decline over time because of fishing practices. Sustainability in fisheries combines theoretical disciplines, such as the population dynamics of fisheries, with practical strategies, such as avoiding overfishing through techniques such as individual fishing quotas, curtailing destructive and illegal fishing practices by lobbying for appropriate law and policy, setting up protected areas, restoring collapsed fisheries, incorporating all externalities involved in harvesting marine ecosystems into fishery economics, educating stakeholders and the wider public, and developing independent certification programs.

<span class="mw-page-title-main">Fisheries management</span> Regulation of fishing

The goal of fisheries management is to produce sustainable biological, environmental and socioeconomic benefits from renewable aquatic resources. Wild fisheries are classified as renewable when the organisms of interest produce an annual biological surplus that with judicious management can be harvested without reducing future productivity. Fishery management employs activities that protect fishery resources so sustainable exploitation is possible, drawing on fisheries science and possibly including the precautionary principle.

<span class="mw-page-title-main">Commercial fishing</span> Catching seafood for commercial profit

Commercial fishing is the activity of catching fish and other seafood for commercial profit, mostly from wild fisheries. It provides a large quantity of food to many countries around the world, but those who practice it as an industry must often pursue fish far into the ocean under adverse conditions. Large-scale commercial fishing is called industrial fishing.

<span class="mw-page-title-main">Aquatic ecosystem</span> Ecosystem in a body of water

An aquatic ecosystem is an ecosystem found in and around a body of water, in contrast to land-based terrestrial ecosystems. Aquatic ecosystems contain communities of organisms—aquatic life—that are dependent on each other and on their environment. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems. Freshwater ecosystems may be lentic ; lotic ; and wetlands.

<span class="mw-page-title-main">Fish</span> Gill-bearing non-tetrapod aquatic vertebrates

A fish is an aquatic, anamniotic, gill-bearing vertebrate animal with swimming fins and a hard skull, but lacking limbs with digits. Fish can be grouped into the more basal jawless fish and the more common jawed fish, the latter including all living cartilaginous and bony fish, as well as the extinct placoderms and acanthodians. Most fish are cold-blooded, their body temperature varying with the surrounding water, though some large active swimmers like white shark and tuna can hold a higher core temperature. Many fish can communicate acoustically with each other, such as during courtship displays.

<span class="mw-page-title-main">Terrestrial animal</span> Animals living on land

Terrestrial animals are animals that live predominantly or entirely on land, as compared with aquatic animals, which live predominantly or entirely in the water, and semiaquatic animals, which rely on both aquatic and terrestrial habitats. Some groups of insects are terrestrial, such as ants, butterflies, earwigs, cockroaches, grasshoppers and many others, while other groups are partially aquatic, such as mosquitoes and dragonflies, which pass their larval stages in water.

<span class="mw-page-title-main">Wild fisheries</span> Area containing fish that are harvested commercially

A wild fishery is a natural body of water with a sizeable free-ranging fish or other aquatic animal population that can be harvested for its commercial value. Wild fisheries can be marine (saltwater) or lacustrine/riverine (freshwater), and rely heavily on the carrying capacity of the local aquatic ecosystem.

The following outline is provided as an overview of and topical guide to fishing:

This is a glossary of terms used in fisheries, fisheries management and fisheries science.

<span class="mw-page-title-main">Climate change and fisheries</span>

Fisheries are affected by climate change in many ways: marine aquatic ecosystems are being affected by rising ocean temperatures, ocean acidification and ocean deoxygenation, while freshwater ecosystems are being impacted by changes in water temperature, water flow, and fish habitat loss. These effects vary in the context of each fishery. Climate change is modifying fish distributions and the productivity of marine and freshwater species. Climate change is expected to lead to significant changes in the availability and trade of fish products. The geopolitical and economic consequences will be significant, especially for the countries most dependent on the sector. The biggest decreases in maximum catch potential can be expected in the tropics, mostly in the South Pacific regions.

The following outline is provided as an overview of and topical guide to fisheries:

The following outline is provided as an overview of and topical guide to fish:

<span class="mw-page-title-main">Semiaquatic</span> Spends part of their time in water, or grows partially submerged in water

In biology, being semi-aquatic refers to various macroorganisms that live regularly in both aquatic and terrestrial environments. When referring to animals, the term describes those that actively spend part of their daily time in water, or land animals that have spent at least one life stages in aquatic environments. When referring to plants, the term describes land plants whose roots have adapted well to tolerate regular, prolonged submersion in water, as well as emergent and (occasionally) floating-leaved aquatic plants that are only partially immersed in water.

References

  1. Biology Online Dictionary: "Aquatic" Archived 31 May 2009 at the Wayback Machine
  2. "Protecting Marine Wildlife". The Humane Society of the United States. Retrieved 7 October 2020.
  3. "World Organisation for Animal Health (OIE)". International Regulatory Co-operation. 2 November 2016. pp. 162–163. doi:10.1787/9789264244047-41-en. ISBN   9789264266254.
  4. "Vertebrate Kidneys". 3 November 2002. Archived from the original on 29 April 2006. Retrieved 14 May 2006.
  5. Kalujnaia, S.; et al. (2007). "Salinity adaptation and gene profiling analysis in the European eel (Anguilla anguilla) using microarray technology". Gen. Comp. Endocrinol. 152 (2007): 274–80. doi:10.1016/j.ygcen.2006.12.025. PMID   17324422.
  6. Bisal, G.A.; Specker, J.L. (24 January 2006). "Cortisol stimulates hypo-osmoregulatory ability in Atlantic salmon, Salmo salar L". Journal of Fish Biology. 39 (3): 421–432. doi:10.1111/j.1095-8649.1991.tb04373.x.
  7. "Nuôi trồng thủy sản, ngành học với nhiều cơ hội việc làm, đáp ứng nhu cầu xã hội". Archived from the original on 11 November 2016.
  8. "Từ điển THUẬT NGỮ NUÔI TRỒNG THỦY SẢN của FAO năm 2008" (PDF). Archived from the original (PDF) on 8 January 2016.
  9. 1 2 "Ocean Habitat". National Geographic. 31 October 2016. Retrieved 28 October 2020.
  10. What Is Aquatic Biodiversity; Why Is It Important?. Virginia, US. 2019. p. 2.{{cite book}}: CS1 maint: location missing publisher (link)
  11. 1 2 In brief, The State of World Fisheries and Aquaculture, 2018 (PDF). FAO. 2018.
  12. C. Michael Hogan (2010) Overfishing, Encyclopedia of earth, topic ed. Sidney Draggan, ed. in chief C. Cleveland, National Council on Science and the Environment (NCSE), Washington, DC
  13. Fisheries and Aquaculture in our Changing Climate Policy brief of the FAO for the UNFCCC COP-15 in Copenhagen, December 2009.
  14. "Prince Charles calls for greater sustainability in fisheries". London Mercury. Archived from the original on 14 July 2014. Retrieved 13 July 2014.
  15. Hubert, Wayne; Quist, Michael, eds. (2010). Inland Fisheries Management in North America (Third ed.). Bethesda, MD: American Fisheries Society. p. 736. ISBN   978-1-934874-16-5.
  16. Angling Retains its Mainstream Appeal and Broad Economic Impact-American Sportfishing Association Archived 2008-05-13 at the Wayback Machine
  17. National Marine Fisheries Service (2014) “Fisheries Economics of the United States 2012” Archived 2022-01-25 at the Wayback Machine pages 6 and 8, NOAA Technical Memorandum NMFS-F/SPO-13.
  18. 1 2 "Sportfishing in America - A Reliable Economic Force" (PDF). Archived from the original (PDF) on 27 July 2021. Retrieved 10 April 2022.