Escape response

Last updated

Escape response in Antarctic krill.

Escape response, escape reaction, or escape behavior is a mechanism by which animals avoid potential predation. It consists of a rapid sequence of movements, or lack of movement, that position the animal in such a way that allows it to hide, freeze, or flee from the supposed predator. [1] [2] Often, an animal's escape response is representative of an instinctual defensive mechanism, though there is evidence that these escape responses may be learned or influenced by experience. [3]

Contents

The classical escape response follows this generalized, conceptual timeline: threat detection, escape initiation, escape execution, and escape termination or conclusion. Threat detection notifies an animal to a potential predator or otherwise dangerous stimulus, which provokes escape initiation, through neural reflexes or more coordinated cognitive processes. Escape execution refers to the movement or series of movements that will hide the animal from the threat or will allow for the animal to flee. Once the animal has effectively avoided the predator or threat, the escape response is terminated. Upon completion of the escape behavior or response, the animal may integrate the experience with its memory, allowing it to learn and adapt its escape response. [3]

Escape responses are anti-predator behaviour that can vary from species to species. [4] [5] [6] [7] [8] The behaviors themselves differ depending upon the species, but may include camouflaging techniques, freezing, or some form of fleeing (jumping, flying, withdrawal, etc.). [2] [1] [3] In fact, variation between individuals is linked to increased survival. [9] In addition, it is not merely increased speed that contributes to the success of the escape response; other factors, including reaction time and the individual's context can play a role. [9] The individual escape response of a particular animal can vary based on an animal's previous experiences and its current state. [10]

Evolutionary importance

The ability to perform an effective escape maneuver directly affects the fitness of the animal, because the ability to evade predation enhances an animal's chance of survival. [3] [9] Those animals that learn to or are simply able to avoid predators have contributed to the wide variety of escape responses seen today. Animals that are able to adapt their responses in ways different from their own species have displayed increased rates of survival. [10] Because of this, it is common for the individual escape response of an animal to vary according to reaction time, environmental conditions, and/or past and present experience. [10] [11] [12]

Arjun Nair et al. found in 2017 that it is not necessarily the speed of the response itself, but the greater distance between the targeted individual and the predator when the response is executed. [13] In addition, the escape response of an individual is directly related to the threat of the predator. Predators that pose the biggest risk to the population will evoke the greatest escape response. Therefore, it may be an adaptive trait selected for by natural selection.

Law and Blake argued in 1996 that many morphological characteristics could contribute to an individual's efficient escape response, but the escape response has undoubtedly been molded by evolution. In their study, they compared more recent sticklebacks to their ancestral form, the Paxton Lake stickleback, and found that the performance of the ancestral form was significantly lower. [14] Therefore, one may conclude that this response has been ripened by evolution.

Neurobiology

How the escape responses are initiated neurologically, and how the movements are coordinated is dependent on the species. The behaviors alone vary widely, so, in a similar manner, the neurobiology of the response can be highly variable between species. [15]

'Simple' escape responses are commonly reflex movements that will quickly move the animal away from the potential threat. [3] These neural circuits operate quickly and effectively, rapidly taking in sensory stimuli and initiating the escape behavior through well-defined neuron systems. [16]

Complex escape responses often require a mixture of cognitive processes. This may stem from a difficult environment to escape from, or the animal having multiple potential escape methods. Initially, the animal must recognize the threat of predation, but following the initial recognition the animal might have to quickly determine the best route of escape, based on prior experience. [17] This means rapid integration of incoming information with prior knowledge, and then coordination of motor movements deemed necessary. Complex escape responses generally require a more robust neural network. [3]

Researchers will often evoke an escape response to test the potency of hormones and/or medication and their relationship to stress. As such, the escape response is fundamental to anatomical and pharmacological research. [18]

Role of learning

Habituation

A series of initially threatening encounters that do not lead to any true adverse outcomes for the animal can drive the development of habituation. [3] Habituation is an adaptation strategy that refers to the diminishing response of an animal to a stimulus following repetitive exposures of the animal to that same stimulus. [19] In other words, the animal learns to distinguish between innately threatening situations and may choose to not go through with their escape response. This is a highly variable phenomenon, where the stimulus itself is highly specific, and the experience is highly context dependent. [20] [21] This suggests that there is no one mechanism by which a species will develop habituation to a stimulus, instead habituation may arise from the integration of experiences. [3] A number of cognitive processes may operate during one single threatening experience, but the levels at which these processes are integrated will determine how the individual animal will potentially respond next. [22]

Caenorhabditis elegans , commonly identified as nematodes, have been used as a model species for studies observing their characteristic "tap-withdrawal response". [23] The tapping on serves as the fear-provoking, mechanical stimulus which C. elegans worms will move away from. If the tapping stimulus continues without any direct effects on the worms, they will gradually stop responding to the stimulus. This response is modulated by a series of mechanosensory neurons (AVM, ALM, PVD, and PLM) which synapse with interneurons (AVD, AVA, AVB, and PVC) transmitting the signal to motor neurons that cause the back-and-forth movements. Habituation to the tapping reduces activity of the initial mechanosensory neurons, seen as decrease in calcium channel activity and neurotransmitter release. [23]

The primary force driving escape habituation is suspected to be energy conservation. [3] If an animal learns that a certain threat will not actively cause harm to it, then the animal can choose to minimize its energy costs by not performing its escape. [24] For example, zebrafish, who are habituated to predators, are more latent to flee than those who were not habituated to predators. [25] However, habituation did not affect the fish's angle of escape from the predator. [25]

Learned helplessness

If an animal cannot react via a startle or avoidance response, they will develop learned helplessness as a result of receiving or perceiving repeated threatening stimuli and believing the stimuli is unavoidable. [26] The animal will submit and not react, even if the stimuli previously triggered instinctual responses or if the animal is provided an escape opportunity. In these situations, escape responses are not used because the animal has almost forgotten their innate response systems. [27]

Helplessness is learned through habituation, because the brain is programmed to believe control is not present. In essence, animals operate under the assumption they have the free will to fight, flee or freeze as well as engage in other behaviors. When escape responses fail, they develop helplessness.

A common, theoretical example of learned helplessness is an elephant, trained by humans who condition the elephant to believe it cannot escape punishment. As a young elephant, it would be chained down with a pick to keep it from leaving. As it grows, the elephant would have the ability to easily overpower the tiny pick. Development of learned helplessness keeps the elephant from doing so, believing that it is trapped and the effort is futile.

In a more natural setting, learned helplessness would most often be displayed by animals that live in group settings. If food were scarce and one individual was always overpowered when it came time to get food, it would soon believe that no matter what it did, getting food would be impossible. It would have to find food on its own or submit to the idea it will not eat.

Startle response

Startle response is an unconscious response to sudden or threatening stimuli. In the wild, common examples would be sharp noises or quick movements. Because these stimuli are so harsh they are connected to a negative effect. This reflex causes a change in body posture, emotional state, or a mental shift to prepare for a specific motor task. [28]

A common example would be cats and how, when startled, their arrector pili muscles contract, making the hair stand up and increase their apparent size. Another example would be excessive blinking due to the contraction of the orbicularis oculi muscle when an object is rapidly moving toward an animal; this is often seen in humans.

Halichoerus grypus, or Grey seals, respond to acoustic startle stimuli by fleeing from the noise. The acoustic startle reflex is only activated when the noise is over eighty decibels, which promotes stress and anxiety responses that encourage flight. [29]

Flight zone

Flight zone, flight initiation distance and escape distance are interchangeable terms which refer to the distance needed to keep an animal under the threshold that would trigger a startle response. [30] [31]

A flight zone can be circumstantial, because a threat can vary in size (individually or in group number). Overall, this distance is the measure of an animal's willingness to take on risks. This differentiates a flight zone from personal distance an animal prefers and social distance (how close other species are willing to be). [32]

An applicable analogy would be a reactive dog. When the flight zone is large, the dog will maintain an observant stance, but a startle response will not occur. As the threatening stimuli moves forward and decreases the flight zone, the dog will exhibit behaviors that fall into a startle or avoidance response. [32]

Avoidance response

The avoidance response is a form of negative reinforcement which is learned through operant conditioning. This response is usually beneficial, as it reduces risk of injury or death for animals, also because it is an adaptive response and can change as the species evolves. Individuals are able to recognize certain species or environments that need to be avoided, which can allow them to increase the flight distance to ensure safety.

When scared, octopus release ink to distract their predators enough that they can burrow into a safe area. Another example of avoidance is the fast-start response in fish. They are able to relegate musculoskeletal control which allows them to withdraw from the environment with the threatening stimuli. [33] It is believed that the neural circuits have adapted over time to more quickly react to a stimulus. Interestingly, fish that keep to the same groups will be more reactive than those who are not.

Examples

In birds

Avian species also display unique escape responses. Birds are uniquely vulnerable to human interference in the form of aircraft, drones, cars, and other technology. [34] [35] There has been a lot of interest in how these structures will and do affect the behaviors of terrestrial and aquatic birds.

One study by Michael A. Weston et al. in 2020 observed how flight initiation changed according to the distance of the drone from the birds. It was found that as the drone approached the tendency of birds to take flight to escape it increased dramatically. This was positively affected by the altitude at which the birds were exposed to the drone. [35] In another experiment by Travis L. DeVault et al. in 1989, brown-headed cowbirds ( Molothrus ater ) were exposed to a demonstration of traffic traveling at speeds between 60–360 km/h. When approached by a vehicle travelling at 120 km/h, the birds only allotted 0.8s to escape before a possible collision. [34] This study showed that fast traffic speeds may not allow enough time for birds to initiate an escape response.

In fish

In fish and amphibians, the escape response appears to be elicited by Mauthner cells, two giant neurons located in the rhombomere 4 of the hindbrain. [36]

Generally, when faced with a dangerous stimuli, fish will contract their axial muscle, resulting a C-shaped contraction away from the stimulus. [37] This response occurs in two separate stages: a muscle contraction that allows them to speed away from a stimulus (stage 1), and a sequential contralateral movement (stage 2). [37] This escape is also known as a "fast-start response". [38] The majority of the fish respond to an external stimulus (pressure changes) within 5 to 15 milliseconds, while some will exhibit a slower response taking up to 80 milliseconds. [39] While the escape response generally only propels the fish a small distance away, this distance is long enough to prevent predation. While many predators use water pressure to catch their prey, this short distance prevents them from feeding on the fish via suction. [40]

Particularly in the case of fish, it has been hypothesized that the differences in escape response are due to the evolution of neural circuits over time. This can be witnessed by observing the difference in the extent of stage 1 behaviour, and the distinct muscle activity in stage 2 of the C-start or fast-start response. [33]

In larval zebrafish (Danio rerio), they sense predators using their lateral line system. [40] When larvae are positioned lateral to a predator, they will escape in a likewise lateral direction. [40] According to game theory, zebrafish who are positioned lateral and ventral to the predator are more likely to survive, rather than any alternate strategy. [40] Finally, the faster (cm/s) the predator is moving, the faster downward the fish will move to escape predation. [40]

Recent research in guppies has shown that familiarity can affect the reaction time involved in the escape response. [38] Guppies that were placed in familiar groups were more likely to respond than guppies who were assigned to unfamiliar groups. Wolcott et al. (2017) suggest that familiar groups may lead to reduced inspection and aggression among conspecifics. The theory of limited attention states that the brain has a limited amount of information processing, and, as an individual is engaged in more tasks, the less resources it can provide to one given task. [41] As a result, they have more attention that they can devote toward anti-predator behaviour.

In insects

Recent research suggests that the escape response in Musca domestica may be controlled by the compound eyes. Stubenfliege (Musca domestica).jpg
Recent research suggests that the escape response in Musca domestica may be controlled by the compound eyes.

When house flies (Musca domestica) encounter an aversive stimulus, they jump rapidly and fly away from the stimulus. A recent research suggests that the escape response in Musca domestica is controlled by a pair of compound eyes, rather than by the ocelli. When one of the compound eyes was covered, the minimum threshold to elicit an escape response increased. In short, the escape reaction of Musca domestica is evoked by the combination of both motion and light. [42]

Cockroaches are also well known for their escape response. When individuals sense a wind puff, they will turn and escape in the opposite direction. [43] The sensory neurons in the paired caudal cerci (singular: cercus) at the rear of the animal send a message along the ventral nerve cord. Then, one of two responses are elicited: running (through the ventral giant interneurons) or flying/running (through the dorsal giant interneurons). [44]

In mammals

Mammals can display a wide range of escape responses. Some of the most common escape responses include withdrawal reflexes, fleeing, and, in some instances where outright escape is too difficult, freezing behaviors.

Higher-order mammals often display withdrawal reflexes. [45] Exposure to danger, or a painful stimulus (in nociceptor-mediated loops), initiate a spinal reflex loop. Sensory receptors transmit the signal to the spine where it is rapidly integrated by interneurons and consequently an efferent signal is sent down motor neurons. The effect of the motor neurons is to contract the muscles necessary to pull the body, or body part away from the stimulus. [46]

Some mammals, like squirrels and other rodents, have defensive neural networks present in the midbrain that allow for quick adaptation of their defense strategy. [47] If these animals are caught in an area without refuge, they can quickly change their strategy from fleeing to freezing. [48] Freezing behavior allows for the animal to avoid detection by the predator. [3]

In 2007, Theodore Stankowich and Richard G. Coss studied the flight initiation distance of Columbian black-tailed deer. According to the authors, the flight initiation distance is the distance between prey and predator when the prey attempts an escape response. [49] They found that the angle, distance, and speed that the deer escaped was related to the distance between the deer and its predator, a human male in this experiment. [49]

Other examples

Cuttlefish (Sepia officinalis) avoid predation using a freezing behaviour. Some cuttlefish also use a jet-driven escape response. Sepia officinalis Linnaeus, 1758 cropped.jpg
Cuttlefish (Sepia officinalis) avoid predation using a freezing behaviour. Some cuttlefish also use a jet-driven escape response.

Squids have developed a multitude of anti-predator escape responses, including: jet-driven escape, postural displays, inking and camouflage. [1] Inking and jet-driven escape are arguably the most salient responses, in which the individual squirts ink at the predator as it speeds away. These blobs of ink can vary in size and shape; larger blobs can distract the predator while smaller blobs can provide a cover under which the squid can disappear. [50] Finally, the released ink also contains hormones such as L-dopa and dopamine that can warn other conspecifics of danger while blocking olfactory receptors in the targeted predator. [51] [1]

Cuttlefish (Sepia officinalis) are also well known for their escape responses. Unlike squids, who may engage more salient escape responses, the cuttlefish has few defences so it relies on more conspicuous means: jet-driven escape and freezing behaviour. [2] However, it appears that the majority of cuttlefish use a freezing escape response when avoiding predation. [2] When the cuttlefish freeze, it minimizes the voltage of their bioelectric field, making them less susceptible to their predators, mainly sharks. [2]

Related Research Articles

<span class="mw-page-title-main">Fear</span> Basic emotion induced by a perceived threat

Fear is an intensely unpleasant primal emotion in response to perceiving or recognizing a danger or threat. Fear causes psychological changes that may produce behavioral reactions such as mounting an aggressive response or fleeing the threat. Fear in human beings may occur in response to a certain stimulus occurring in the present, or in anticipation or expectation of a future threat perceived as a risk to oneself. The fear response arises from the perception of danger leading to confrontation with or escape from/avoiding the threat, which in extreme cases of fear can be a freeze response.

Habituation is a form of non-associative learning in which a non-reinforced response to a stimulus decreases after repeated or prolonged presentations of that stimulus. For example, organisms may habituate to repeated sudden loud noises when they learn these have no consequences.

<span class="mw-page-title-main">Neuroethology</span> Study of animal behavior and its underlying mechanistic control by the nervous system

Neuroethology is the evolutionary and comparative approach to the study of animal behavior and its underlying mechanistic control by the nervous system. It is an interdisciplinary science that combines both neuroscience and ethology. A central theme of neuroethology, which differentiates it from other branches of neuroscience, is its focus on behaviors that have been favored by natural selection rather than on behaviors that are specific to a particular disease state or laboratory experiment.

<span class="mw-page-title-main">Caridoid escape reaction</span> Innate escape mechanism by crustaceans

The caridoid escape reaction, also known as lobstering or tail-flipping, refers to an innate escape mechanism in marine and freshwater crustaceans such as lobsters, krill, shrimp and crayfish.

<span class="mw-page-title-main">Flight zone</span>

The flight zone of an animal is the area surrounding an animal that if encroached upon by a potential predator or threat, including humans, will cause alarm and escape behavior. The flight zone is determined by the animal's flight distance, sometimes called flight initiation distance (FID) which extends horizontally from the animal and sometimes vertically. It may also be termed escape distance, alert distance, flush distance, and escape flight distance.

In animals, including humans, the startle response is a largely unconscious defensive response to sudden or threatening stimuli, such as sudden noise or sharp movement, and is associated with negative affect. Usually the onset of the startle response is a startle reflex reaction. The startle reflex is a brainstem reflectory reaction (reflex) that serves to protect vulnerable parts, such as the back of the neck and the eyes (eyeblink) and facilitates escape from sudden stimuli. It is found across many different species, throughout all stages of life. A variety of responses may occur depending on the affected individual's emotional state, body posture, preparation for execution of a motor task, or other activities. The startle response is implicated in the formation of specific phobias.

Neural adaptation or sensory adaptation is a gradual decrease over time in the responsiveness of the sensory system to a constant stimulus. It is usually experienced as a change in the stimulus. For example, if a hand is rested on a table, the table's surface is immediately felt against the skin. Subsequently, however, the sensation of the table surface against the skin gradually diminishes until it is virtually unnoticeable. The sensory neurons that initially respond are no longer stimulated to respond; this is an example of neural adaptation.

Sensitization is a non-associative learning process in which repeated administration of a stimulus results in the progressive amplification of a response. Sensitization often is characterized by an enhancement of response to a whole class of stimuli in addition to the one that is repeated. For example, repetition of a painful stimulus may make one more responsive to a loud noise.

<span class="mw-page-title-main">Escape reflex</span>

Escape reflex, or escape behavior, is any kind of escape response found in an animal when it is presented with an unwanted stimulus. It is a simple reflectory reaction in response to stimuli indicative of danger, that initiates an escape motion of an animal. The escape response has been found to be processed in the telencephalon.

The Mauthner cells are a pair of big and easily identifiable neurons located in the rhombomere 4 of the hindbrain in fish and amphibians that are responsible for a very fast escape reflex. The cells are also notable for their unusual use of both chemical and electrical synapses.

<span class="mw-page-title-main">Optomotor response</span> Innate orienting behavior common in fish and insects

In behavioral biology, the optomotor response is an innate, orienting behavior evoked by whole-field visual motion and is common to fish and insects during locomotion, such as swimming, walking and flying. The optomotor response has algorithmic properties such that the direction of the whole-field coherent motion dictates the direction of the behavioral output. For instance, when zebrafish larvae are presented with a sinusoidal black and white grating pattern, the larvae will turn and swim in the direction of the perceived motion.

Olfactory memory refers to the recollection of odors. Studies have found various characteristics of common memories of odor memory including persistence and high resistance to interference. Explicit memory is typically the form focused on in the studies of olfactory memory, though implicit forms of memory certainly supply distinct contributions to the understanding of odors and memories of them. Research has demonstrated that the changes to the olfactory bulb and main olfactory system following birth are extremely important and influential for maternal behavior. Mammalian olfactory cues play an important role in the coordination of the mother infant bond, and the following normal development of the offspring. Maternal breast odors are individually distinctive, and provide a basis for recognition of the mother by her offspring.

<span class="mw-page-title-main">Pain in fish</span> Overview about the pain in fish

Fish fulfill several criteria proposed as indicating that non-human animals experience pain. These fulfilled criteria include a suitable nervous system and sensory receptors, opioid receptors and reduced responses to noxious stimuli when given analgesics and local anaesthetics, physiological changes to noxious stimuli, displaying protective motor reactions, exhibiting avoidance learning and making trade-offs between noxious stimulus avoidance and other motivational requirements.

<span class="mw-page-title-main">Pain in animals</span> Overview about pain in animals

Pain negatively affects the health and welfare of animals. "Pain" is defined by the International Association for the Study of Pain as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage." Only the animal experiencing the pain can know the pain's quality and intensity, and the degree of suffering. It is harder, if even possible, for an observer to know whether an emotional experience has occurred, especially if the sufferer cannot communicate. Therefore, this concept is often excluded in definitions of pain in animals, such as that provided by Zimmerman: "an aversive sensory experience caused by actual or potential injury that elicits protective motor and vegetative reactions, results in learned avoidance and may modify species-specific behaviour, including social behaviour." Nonhuman animals cannot report their feelings to language-using humans in the same manner as human communication, but observation of their behaviour provides a reasonable indication as to the extent of their pain. Just as with doctors and medics who sometimes share no common language with their patients, the indicators of pain can still be understood.

<span class="mw-page-title-main">Pain in crustaceans</span> Ethical debate

There is a scientific debate which questions whether crustaceans experience pain. It is a complex mental state, with a distinct perceptual quality but also associated with suffering, which is an emotional state. Because of this complexity, the presence of pain in an animal, or another human for that matter, cannot be determined unambiguously using observational methods, but the conclusion that animals experience pain is often inferred on the basis of likely presence of phenomenal consciousness which is deduced from comparative brain physiology as well as physical and behavioural reactions.

<span class="mw-page-title-main">Pain in invertebrates</span> Contentious issue

Pain in invertebrates is a contentious issue. Although there are numerous definitions of pain, almost all involve two key components. First, nociception is required. This is the ability to detect noxious stimuli which evokes a reflex response that moves the entire animal, or the affected part of its body, away from the source of the stimulus. The concept of nociception does not necessarily imply any adverse, subjective feeling; it is a reflex action. The second component is the experience of "pain" itself, or suffering—i.e., the internal, emotional interpretation of the nociceptive experience. Pain is therefore a private, emotional experience. Pain cannot be directly measured in other animals, including other humans; responses to putatively painful stimuli can be measured, but not the experience itself. To address this problem when assessing the capacity of other species to experience pain, argument-by-analogy is used. This is based on the principle that if a non-human animal's responses to stimuli are similar to those of humans, it is likely to have had an analogous experience. It has been argued that if a pin is stuck in a chimpanzee's finger and they rapidly withdraw their hand, then argument-by-analogy implies that like humans, they felt pain. It has been questioned why the inference does not then follow that a cockroach experiences pain when it writhes after being stuck with a pin. This argument-by-analogy approach to the concept of pain in invertebrates has been followed by others.

Many experiments have been done to find out how the brain interprets stimuli and how animals develop fear responses. The emotion, fear, has been hard-wired into almost every individual, due to its vital role in the survival of the individual. Researchers have found that fear is established unconsciously and that the amygdala is involved with fear conditioning.

Animals have many different tactics for defending themselves, depending on the severity of the threat they are encountering. Stages of threat vary along a spectrum referred to as the "predatory imminence continuum", spanning from low-risk (pre-encounter) to high-risk (interaction) threats. The main assumption of the predatory imminence continuum is that as threat levels increase, defensive response strategies change. During the pre-encounter period, an animal may engage in activities like exploration or foraging. But if the animal senses that a predator is nearby, the animal may begin to express species specific defense reactions such as freezing in an attempt to avoid detection by the predator. However, in situations where a threat is imminent, once the animal is detected by its predator, freezing may no longer be the optimal behaviour for survival. At this point, the animal enters the circa-strike phase, where its behaviour will transition from passive freezing to active flight, or even attack if escape is not possible.

Behavioral plasticity refers to a change in an organism's behavior that results from exposure to stimuli, such as changing environmental conditions. Behavior can change more rapidly in response to changes in internal or external stimuli than is the case for most morphological traits and many physiological traits. As a result, when organisms are confronted by new conditions, behavioral changes often occur in advance of physiological or morphological changes. For instance, larval amphibians changed their antipredator behavior within an hour after a change in cues from predators, but morphological changes in body and tail shape in response to the same cues required a week to complete.

Dishabituation is a form of recovered or restored behavioral response wherein the reaction towards a known stimulus is enhanced, as opposed to habituation. Initially, it was proposed as an explanation to increased response for a habituated behavior by introducing an external stimulus; however, upon further analysis, some have suggested that a proper analysis of dishabituation should be taken into consideration only when the response is increased by implying the original stimulus.

References

  1. 1 2 3 4 York CA, Bartol IK (2016). "Anti-predator behavior of squid throughout ontogeny". Journal of Experimental Marine Biology and Ecology. 480: 26–35. doi: 10.1016/j.jembe.2016.03.011 .
  2. 1 2 3 4 5 Bedore CN, Kajiura SM, Johnsen S (December 2015). "Freezing behaviour facilitates bioelectric crypsis in cuttlefish faced with predation risk". Proceedings. Biological Sciences. 282 (1820): 20151886. doi:10.1098/rspb.2015.1886. PMC   4685776 . PMID   26631562.
  3. 1 2 3 4 5 6 7 8 9 10 Evans DA, Stempel AV, Vale R, Branco T (April 2019). "Cognitive Control of Escape Behaviour". Trends in Cognitive Sciences. 23 (4): 334–348. doi:10.1016/j.tics.2019.01.012. PMC   6438863 . PMID   30852123.
  4. Domenici P, Booth D, Blagburn JM, Bacon JP (November 2008). "Cockroaches keep predators guessing by using preferred escape trajectories". Current Biology. 18 (22): 1792–6. doi:10.1016/j.cub.2008.09.062. PMC   2678410 . PMID   19013065.
  5. Eaton RC (1984). Eaton RC (ed.). Neural Mechanisms of Startle Behavior | SpringerLink. doi:10.1007/978-1-4899-2286-1. ISBN   978-1-4899-2288-5.
  6. Samia, Diogo S. M.; Nakagawa, Shinichi; Nomura, Fausto; Rangel, Thiago F.; Blumstein, Daniel T. (November 16, 2015). "Increased tolerance to humans among disturbed wildlife". Nature Communications. 6 (1). doi:10.1038/ncomms9877. ISSN   2041-1723. PMC   4660219 . PMID   26568451.
  7. Stankowich, Theodore; Blumstein, Daniel T (December 22, 2005). "Fear in animals: a meta-analysis and review of risk assessment". Proceedings of the Royal Society B: Biological Sciences. 272 (1581): 2627–2634. doi:10.1098/rspb.2005.3251. ISSN   0962-8452. PMC   1559976 . PMID   16321785.
  8. Mikula, Peter; Tomášek, Oldřich; Romportl, Dušan; Aikins, Timothy K.; Avendaño, Jorge E.; Braimoh-Azaki, Bukola D. A.; Chaskda, Adams; Cresswell, Will; Cunningham, Susan J.; Dale, Svein; Favoretto, Gabriela R.; Floyd, Kelvin S.; Glover, Hayley; Grim, Tomáš; Henry, Dominic A. W. (April 20, 2023). "Bird tolerance to humans in open tropical ecosystems". Nature Communications. 14 (1). doi:10.1038/s41467-023-37936-5. ISSN   2041-1723. PMC   10119130 . PMID   37081049.
  9. 1 2 3 Walker JA, Ghalambor CK, Griset OL, McKenney D, Reznick DN (October 1, 2005). "Do faster starts increase the probability of evading predators?". Functional Ecology. 19 (5): 808–815. doi: 10.1111/j.1365-2435.2005.01033.x .
  10. 1 2 3 von Reyn CR, Nern A, Williamson WR, Breads P, Wu M, Namiki S, Card GM (June 2017). "Feature Integration Drives Probabilistic Behavior in the Drosophila Escape Response". Neuron. 94 (6): 1190–1204.e6. doi: 10.1016/j.neuron.2017.05.036 . PMID   28641115.
  11. Mikula, Peter; Tomášek, Oldřich; Romportl, Dušan; Aikins, Timothy K.; Avendaño, Jorge E.; Braimoh-Azaki, Bukola D. A.; Chaskda, Adams; Cresswell, Will; Cunningham, Susan J.; Dale, Svein; Favoretto, Gabriela R.; Floyd, Kelvin S.; Glover, Hayley; Grim, Tomáš; Henry, Dominic A. W. (April 20, 2023). "Bird tolerance to humans in open tropical ecosystems". Nature Communications. 14 (1). doi:10.1038/s41467-023-37936-5. hdl: 10023/27452 . ISSN   2041-1723.
  12. Samia, Diogo S. M.; Nakagawa, Shinichi; Nomura, Fausto; Rangel, Thiago F.; Blumstein, Daniel T. (November 16, 2015). "Increased tolerance to humans among disturbed wildlife". Nature Communications. 6 (1). doi:10.1038/ncomms9877. ISSN   2041-1723. PMC   4660219 . PMID   26568451.
  13. Nair A, Nguyen C, McHenry MJ (April 2017). "A faster escape does not enhance survival in zebrafish larvae". Proceedings. Biological Sciences. 284 (1852): 20170359. doi:10.1098/rspb.2017.0359. PMC   5394678 . PMID   28404783.
  14. Law T, Blake R (December 1996). "Comparison of the fast-start performances of closely related, morphologically distinct threespine sticklebacks (Gasterosteus spp.)". The Journal of Experimental Biology. 199 (Pt 12): 2595–604. doi:10.1242/jeb.199.12.2595. PMID   9320526.
  15. Wilson AM, Hubel TY, Wilshin SD, Lowe JC, Lorenc M, Dewhirst OP, et al. (February 2018). "Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala" (PDF). Nature. 554 (7691): 183–188. Bibcode:2018Natur.554..183W. doi:10.1038/nature25479. PMID   29364874. S2CID   4405091.
  16. Herberholz J, Marquart GD (August 28, 2012). "Decision Making and Behavioral Choice during Predator Avoidance". Frontiers in Neuroscience. 6: 125. doi: 10.3389/fnins.2012.00125 . PMC   3428584 . PMID   22973187.
  17. Ellard CG, Eller MC (March 2009). "Spatial cognition in the gerbil: computing optimal escape routes from visual threats". Animal Cognition. 12 (2): 333–45. doi:10.1007/s10071-008-0193-9. PMID   18956215. S2CID   22411881.
  18. Lim LW, Blokland A, van Duinen M, Visser-Vandewalle V, Tan S, Vlamings R, et al. (April 2011). "Increased plasma corticosterone levels after periaqueductal gray stimulation-induced escape reaction or panic attacks in rats". Behavioural Brain Research. 218 (2): 301–7. doi:10.1016/j.bbr.2010.12.026. PMID   21185871. S2CID   34737502.
  19. Van Hout WJ, Emmelkamp PM (January 2002). "Exposure in vivo therapy". In Hersen M, Sledge W (eds.). Encyclopedia of Psychotherapy. pp. 761–8. doi:10.1016/B0-12-343010-0/00091-X. ISBN   9780123430106.
  20. Hemmi JM, Tomsic D (April 2012). "The neuroethology of escape in crabs: from sensory ecology to neurons and back". Current Opinion in Neurobiology. 22 (2): 194–200. doi:10.1016/j.conb.2011.11.012. hdl: 11336/20310 . PMID   22176799. S2CID   13556069.
  21. Guest BB, Gray JR (March 2006). "Responses of a looming-sensitive neuron to compound and paired object approaches". Journal of Neurophysiology. 95 (3): 1428–41. doi:10.1152/jn.01037.2005. PMID   16319198.
  22. Roberts AC, Reichl J, Song MY, Dearinger AD, Moridzadeh N, Lu ED, et al. (December 28, 2011). "Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade". PLOS ONE. 6 (12): e29132. Bibcode:2011PLoSO...629132R. doi: 10.1371/journal.pone.0029132 . PMC   3247236 . PMID   22216183.
  23. 1 2 Lin CH, Frame AK, Rankin CH (January 2017). "Nematode Learning and Memory: Neuroethology". In Hersen M, Sledge W (eds.). Encyclopedia of Psychotherapy. pp. 227–234. doi:10.1016/B978-0-12-809633-8.01269-3. ISBN   9780128132524.
  24. Baglan H, Lazzari C, Guerrieri F (April 2017). "Learning in mosquito larvae (Aedes aegypti): Habituation to a visual danger signal". Journal of Insect Physiology. 98: 160–166. doi:10.1016/j.jinsphys.2017.01.001. PMID   28077263.
  25. 1 2 Dill LM (1974). "The escape response of the zebra danio (Brachydanio rerio) II. The effect of experience". Animal Behaviour. 22 (3): 723–730. doi:10.1016/s0003-3472(74)80023-0.
  26. Wagner HR, Hall TL, Cote IL (April 1977). "The applicability of inescapable shock as a source of animal depression". The Journal of General Psychology. 96 (2d Half): 313–8. doi:10.1080/00221309.1977.9920828. PMID   559062.
  27. Langerhans RB. 10 Evolutionary consequences of predation: avoidance, escape, reproduction, and diversification. CiteSeerX   10.1.1.467.3651 .
  28. Domenici P, Blagburn JM, Bacon JP (August 2011). "Animal escapology II: escape trajectory case studies". The Journal of Experimental Biology. 214 (Pt 15): 2474–94. doi:10.1242/jeb.053801. PMC   3135389 . PMID   21753040.
  29. Götz T, Janik VM (April 2011). "Repeated elicitation of the acoustic startle reflex leads to sensitisation in subsequent avoidance behaviour and induces fear conditioning". BMC Neuroscience. 12 (1): 30. doi: 10.1186/1471-2202-12-30 . PMC   3101131 . PMID   21489285.
  30. Samia, Diogo S. M.; Nakagawa, Shinichi; Nomura, Fausto; Rangel, Thiago F.; Blumstein, Daniel T. (November 16, 2015). "Increased tolerance to humans among disturbed wildlife". Nature Communications. 6 (1). doi:10.1038/ncomms9877. ISSN   2041-1723. PMC   4660219 . PMID   26568451.
  31. Mikula, Peter; Tomášek, Oldřich; Romportl, Dušan; Aikins, Timothy K.; Avendaño, Jorge E.; Braimoh-Azaki, Bukola D. A.; Chaskda, Adams; Cresswell, Will; Cunningham, Susan J.; Dale, Svein; Favoretto, Gabriela R.; Floyd, Kelvin S.; Glover, Hayley; Grim, Tomáš; Henry, Dominic A. W. (April 20, 2023). "Bird tolerance to humans in open tropical ecosystems". Nature Communications. 14 (1). doi:10.1038/s41467-023-37936-5. ISSN   2041-1723. PMC   10119130 . PMID   37081049.
  32. 1 2 Greggor AL, Trimmer PC, Barrett BJ, Sih A (2019). "Challenges of Learning to Escape Evolutionary Traps". Frontiers in Ecology and Evolution. 7. doi: 10.3389/fevo.2019.00408 . hdl: 21.11116/0000-0005-518B-3 . ISSN   2296-701X.
  33. 1 2 Hale ME, Long JH, McHenry MJ, Westneat MW (May 2002). "Evolution of behavior and neural control of the fast-start escape response". Evolution; International Journal of Organic Evolution. 56 (5): 993–1007. doi: 10.1111/j.0014-3820.2002.tb01411.x . PMID   12093034. S2CID   14582413.
  34. 1 2 DeVault TL, Blackwell BF, Seamans TW, Lima SL, Fernández-Juricic E (February 2015). "Speed kills: ineffective avian escape responses to oncoming vehicles". Proceedings. Biological Sciences. 282 (1801): 20142188. doi:10.1098/rspb.2014.2188. PMC   4308997 . PMID   25567648.
  35. 1 2 Weston MA, O'Brien C, Kostoglou KN, Symonds MR (2020). "Escape responses of terrestrial and aquatic birds to drones: Towards a code of practice to minimize disturbance". Journal of Applied Ecology. 57 (4): 777–785. doi: 10.1111/1365-2664.13575 . ISSN   1365-2664. S2CID   213279158.
  36. Korn H, Faber DS (July 2005). "The Mauthner cell half a century later: a neurobiological model for decision-making?". Neuron. 47 (1): 13–28. doi: 10.1016/j.neuron.2005.05.019 . PMID   15996545. S2CID   2851487.
  37. 1 2 Domenici P, Norin T, Bushnell PG, Johansen JL, Skov PV, Svendsen MB, et al. (December 2014). "Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale". Biology Open. 4 (1): 79–85. doi:10.1242/bio.20149332. PMC   4295168 . PMID   25527644.
  38. 1 2 Wolcott HL, Ojanguren AF, Barbosa M (October 11, 2017). "The effects of familiarity on escape responses in the Trinidadian guppy (Poecilia reticulata)". PeerJ. 5: e3899. doi: 10.7717/peerj.3899 . PMC   5640977 . PMID   29038756.
  39. Burgess HA, Granato M (May 2007). "Sensorimotor gating in larval zebrafish". The Journal of Neuroscience. 27 (18): 4984–94. doi:10.1523/JNEUROSCI.0615-07.2007. PMC   6672105 . PMID   17475807.
  40. 1 2 3 4 5 Stewart WJ, Nair A, Jiang H, McHenry MJ (December 2014). "Prey fish escape by sensing the bow wave of a predator". The Journal of Experimental Biology. 217 (Pt 24): 4328–36. doi: 10.1242/jeb.111773 . PMID   25520384.
  41. Dukas R (November 2002). "Behavioural and ecological consequences of limited attention". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 357 (1427): 1539–47. doi:10.1098/rstb.2002.1063. PMC   1693070 . PMID   12495511.
  42. Holmqvist MH, Srinivasan MV (October 1991). "A visually evoked escape response of the housefly". Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology. 169 (4): 451–9. doi:10.1007/bf00197657. PMID   1779418. S2CID   22459886.
  43. Domenici P, Booth D, Blagburn JM, Bacon JP (November 2009). "Escaping away from and towards a threat: the cockroach's strategy for staying alive". Communicative & Integrative Biology. 2 (6): 497–500. doi:10.4161/cib.2.6.9408. PMC   2829824 . PMID   20195455.
  44. Fouad K, Rathmayer W, Libersat F (January 1, 1996). "Neuromodulation of the escape behavior of the cockroach Periplaneta americana by the venom of the parasitic wasp Ampulex compressa". Journal of Comparative Physiology A. 178 (1): 91–100. doi:10.1007/bf00189593. S2CID   39090792.
  45. Rohrbach H, Zeiter S, Andersen OK, Wieling R, Spadavecchia C (April 2014). "Quantitative assessment of the nociceptive withdrawal reflex in healthy, non-medicated experimental sheep" (PDF). Physiology & Behavior. 129: 181–5. doi:10.1016/j.physbeh.2014.02.017. PMID   24561088. S2CID   207375727.
  46. Morrison I, Perini I, Dunham J (November 2013). "Facets and mechanisms of adaptive pain behavior: predictive regulation and action". Frontiers in Human Neuroscience. 7: 755. doi: 10.3389/fnhum.2013.00755 . PMC   3842910 . PMID   24348358.
  47. Comoli E, Das Neves Favaro P, Vautrelle N, Leriche M, Overton PG, Redgrave P (2012). "Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense". Frontiers in Neuroanatomy. 6: 9. doi: 10.3389/fnana.2012.00009 . PMC   3324116 . PMID   22514521.
  48. Hennig CW (1976). "The effect of distance between predator and prey and the opportunity to escape on tonic immobility in Anolis carolinensis". The Psychological Record. 26 (3): 313–320. doi:10.1007/BF03394393. S2CID   148932657.
  49. 1 2 Stankowich T, Coss RG (March 1, 2007). "Effects of risk assessment, predator behavior, and habitat on escape behavior in Columbian black-tailed deer". Behavioral Ecology. 18 (2): 358–367. doi: 10.1093/beheco/arl086 .
  50. Bush SL, Robison BH (September 1, 2007). "Ink utilization by mesopelagic squid". Marine Biology. 152 (3): 485–494. doi:10.1007/s00227-007-0684-2. ISSN   0025-3162. S2CID   84629175.
  51. Gilly W, Lucero M (1992). "Behavioral Responses to Chemical Stimulation of the Olfactory Organ in the Squid Loligo Opalescens". Journal of Experimental Biology. 162: 209–229. doi:10.1242/jeb.162.1.209.