Cockroach

Last updated

Cockroach
Temporal range: Late Jurassic–Present [1]
Snodgrass common household roaches.png
Common household cockroaches
A) German cockroach
B) American cockroach
C) Australian cockroach
D&E) Oriental cockroach (♀ & ♂)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Superorder: Dictyoptera
Order: Blattodea
Families

Anaplectidae
Blaberidae
Blattidae
Corydiidae
Cryptocercidae
Ectobiidae
Lamproblattidae
Nocticolidae
Tryonicidae

Contents

Cockroaches (or roaches [2] [3] [4] ) are insects belonging to the order Blattodea (Blattaria). About 30 cockroach species out of 4,600 are associated with human habitats. Some species are well-known pests.

Modern cockroaches are an ancient group that first appeared during the Late Jurassic, with their ancestors, known as "roachoids", likely originating during the Carboniferous period around 320 million years ago. Those early ancestors, however, lacked the internal ovipositors of modern roaches. Cockroaches are somewhat generalized insects lacking special adaptations (such as the sucking mouthparts of aphids and other true bugs); they have chewing mouthparts and are probably among the most primitive of living Neopteran insects. They are common and hardy insects capable of tolerating a wide range of climates, from Arctic cold to tropical heat. Tropical cockroaches are often much larger than temperate species.

Modern cockroaches are not considered to be a monophyletic group, as it has been found based on genetics that termites are deeply nested within the group, with some groups of cockroaches more closely related to termites than they are to other cockroaches, thus rendering Blattaria paraphyletic. Both cockroaches and termites are included into Blattodea.

Some species, such as the gregarious German cockroach, have an elaborate social structure involving common shelter, social dependence, information transfer and kin recognition. Cockroaches have appeared in human culture since classical antiquity. They are popularly depicted as large, dirty pests, although the majority of species are small and inoffensive and live in a wide range of habitats around the world.

Taxonomy and evolution

A Turkestan cockroach (Shelfordella lateralis) next to an approximately 108-million-year-old fossil cockroach from the Cretaceous Period. Cockroaches - then and now.jpg
A Turkestan cockroach ( Shelfordella lateralis ) next to an approximately 108-million-year-old fossil cockroach from the Cretaceous Period.
A 40- to 50-million-year-old cockroach in Baltic amber (Eocene) Baltic amber inclusions - Cockroach (Pterygota, Neoptera, Dictyoptera, Blattodea).JPG
A 40- to 50-million-year-old cockroach in Baltic amber (Eocene)

Cockroaches are members of the superorder Dictyoptera, which includes the termites and mantids, [5] a group of insects once thought to be separate from cockroaches. Currently, 4,600 species and over 460 genera are described worldwide. [6] [7] The name "cockroach" comes from the Spanish word for cockroach, cucaracha, transformed by 1620s English folk etymology into "cock" and "roach". [8] The scientific name derives from the Latin blatta, "an insect that shuns the light", which in classical Latin was applied not only to cockroaches, but also to mantids. [9] [10]

Historically, the name Blattaria was used largely interchangeably with the name Blattodea, but whilst Blattaria was used to refer to 'true' cockroaches exclusively, the Blattodea also includes the termites. The current catalogue of world cockroach species uses the name Blattodea for the group. [6] Another name, Blattoptera, is also sometimes used to refer to extinct cockroach relatives. [11]

The earliest cockroach-like fossils ("blattopterans" or "roachoids") are from the Carboniferous period 320 million years ago. [12] [13] [14] Fossil roachoids are considered the common ancestor of both mantises and modern cockroaches, and are distinguished from the latter by the presence of a long external ovipositor. As the body, hind wings and mouthparts are not preserved in fossils frequently, the relationship of these roachoids and modern cockroaches remains disputed. The earliest definitive fossils of modern crown group cockroaches, specifically Corydiidae, are known from the Late Jurassic rocks of Russia. [1]

The evolutionary relationships of the Blattodea (cockroaches and termites) shown in the cladogram are based on Inward, Beccaloni and Eggleton (2007). [15] The cockroach families Anaplectidae, Lamproblattidae, and Tryonicidae are not shown but are placed within the superfamily Blattoidea. The cockroach families Corydiidae and Ectobiidae were previously known as the Polyphagidae and Blattellidae. [16]

Dictyoptera
Blattodea
Blattoidea
Blaberoidea

Blaberidae (giant cockroaches)

Ectobiidae (part)

Ectobiidae (part)

Corydioidea

Corydiidae (sand cockroaches, etc)

Nocticolidae (cave cockroaches, etc)

Mantodea (mantises)

Termites were previously regarded as a separate order Isoptera to cockroaches. However, recent genetic evidence strongly suggests that they evolved directly from 'true' cockroaches, and many authors now place them as an "epifamily" of Blattodea. [15] This evidence supported a hypothesis suggested in 1934 that termites are closely related to the wood-eating cockroaches (genus Cryptocercus ). This hypothesis was originally based on similarity of the symbiotic gut flagellates in termites regarded as living fossils and wood-eating cockroaches. [17] Additional evidence emerged when F. A. McKittrick (1965) noted similar morphological characteristics between some termites and cockroach nymphs. [18] The similarities among these cockroaches and termites have led some scientists to reclassify termites as a single family, the Termitidae, within the order Blattodea. [15] [19] Other scientists have taken a more conservative approach, proposing to retain the termites as the Termitoidae, an epifamily within the order. Such a measure preserves the classification of termites at family level and below. [20]

Description

Domino cockroach Therea petiveriana, normally found in India Domino cockroach Therea petiveriana.jpg
Domino cockroach Therea petiveriana , normally found in India

Most species of cockroach are about the size of a thumbnail, but several species are notably larger. The world's heaviest cockroach is the Australian giant burrowing cockroach Macropanesthia rhinoceros, which can reach 8 centimetres (3 in) in length and weigh up to 35 grams (1.2 oz). [21] Comparable in size is the Central American giant cockroach Blaberus giganteus . [22] The longest cockroach species is Megaloblatta longipennis , which can reach 97 mm (3+78 in) in length and 45 mm (1+34 in) across. [23] A Central and South American species, Megaloblatta blaberoides , has the largest wingspan of up to 185 mm (7+14 in). [24] At the other end of the size scale, Attaphila cockroaches that live with leaf-cutter ants include some of the world's smallest species, growing to about 3.5 mm in length. [25]

Head of Periplaneta americana Cockroach head.jpg
Head of Periplaneta americana

Cockroaches are generalized insects with few special adaptations, and may be among the most primitive living Neopteran insects. They have a relatively small head and a broad, flattened body, and most species are reddish-brown to dark brown. They have large compound eyes, two ocelli, and long, flexible antennae. The mouthparts are on the underside of the head and include generalized chewing mandibles, salivary glands and various touch and taste receptors. [26]

The body is divided into a thorax of three segments and a ten-segmented abdomen. The external surface has a tough exoskeleton which contains calcium carbonate; this protects the inner organs and provides attachment to muscles. This external exoskeleton is coated with wax to repel water. The wings are attached to the second and third thoracic segments. The tegmina, or first pair of wings, are tough and protective; these lay as a shield on top of the membranous hind wings, which are used in flight. All four wings have branching longitudinal veins, as well as multiple cross-veins. [27]

The three pairs of legs are sturdy, with large coxae and five claws each. [27] They are attached to each of the three thoracic segments. Of these, the front legs are the shortest and the hind legs the longest, providing the main propulsive power when the insect runs. [26] The spines on the legs were earlier considered to be sensory, but observations of the insect's gait on sand and wire meshes have demonstrated that they help in locomotion on difficult terrain. The structures have been used as inspiration for robotic legs. [28] [29]

The abdomen has ten segments, each having a pair of spiracles for respiration. In addition to the spiracles, the final segment consists of a pair of cerci, a pair of anal styles, the anus and the external genitalia. Males have an aedeagus through which they secrete sperm during copulation, while females have spermatheca for storing sperm and an ovipositor through which the oothecae are laid. [26]

Distribution and habitat

Cockroaches are abundant throughout the world and live in a wide range of environments, especially in the tropics and subtropics. [30] Cockroaches can withstand extremely low temperatures, allowing them to live in the Arctic. Some species are capable of surviving temperatures of −122 °C (−188 °F) by manufacturing an antifreeze made out of glycerol. [31] In North America, 50 species separated into five families are found throughout the continent. [30] 450 species are found in Australia. [32] Only about four widespread species are commonly regarded as pests. [33] [34]

Cockroaches occupy a wide range of habitats. Many live in leaf litter, among the stems of matted vegetation, in rotting wood, in holes in stumps, in cavities under bark, under log piles and among debris. Some live in arid regions and have developed mechanisms to survive without access to water sources. Others are aquatic, living near the surface of water bodies, including bromeliad phytotelmata, and diving to forage for food. Most of these respire by piercing the water surface with the tip of the abdomen which acts as a snorkel, but some carry a bubble of air under their thoracic shield when they submerge. Others live in the forest canopy where they may be one of the main types of invertebrate present. Here they may hide during the day in crevices, among dead leaves, in bird and insect nests or among epiphytes, emerging at night to feed. [35]

Behavior

A cockroach soon after ecdysis Cockroach, post-ecdysis.jpg
A cockroach soon after ecdysis

Cockroaches are social insects; a large number of species are either gregarious or inclined to aggregate, and a slightly smaller number exhibit parental care. [36] It used to be thought that cockroaches aggregated because they were reacting to environmental cues, but it is now believed that pheromones are involved in these behaviors. Some species secrete these in their feces with gut microbial symbionts being involved, while others use glands located on their mandibles. Pheromones produced by the cuticle may enable cockroaches to distinguish between different populations of cockroach by odor. The behaviors involved have been studied in only a few species, but German cockroaches leave fecal trails with an odor gradient. [36] Other cockroaches follow such trails to discover sources of food and water, and where other cockroaches are hiding. Thus, cockroaches have emergent behavior, in which group or swarm behavior emerges from a simple set of individual interactions. [37]

Daily rhythms may also be regulated by a complex set of hormonal controls of which only a small subset have been understood. In 2005, the role of one of these proteins, pigment dispersing factor (PDF), was isolated and found to be a key mediator in the circadian rhythms of the cockroach. [38]

Pest species adapt readily to a variety of environments, but prefer warm conditions found within buildings. Many tropical species prefer even warmer environments. Cockroaches are mainly nocturnal [39] and run away when exposed to light. An exception to this is the Asian cockroach, which flies mostly at night but is attracted to brightly lit surfaces and pale colors. [40]

Collective decision-making

Gregarious cockroaches display collective decision-making when choosing food sources. When a sufficient number of individuals (a "quorum") exploits a food source, this signals to newcomer cockroaches that they should stay there longer rather than leave for elsewhere. [41] Other mathematical models have been developed to explain aggregation dynamics and conspecific recognition. [42] [43] [44]

Cooperation and competition are balanced in cockroach group decision-making behavior. [37]

Cockroaches appear to use just two pieces of information to decide where to go, namely how dark it is and how many other cockroaches there are. A study used specially scented roach-sized robots that seem real to the roaches to demonstrate that once there are enough insects in a place to form a critical mass, the roaches accepted the collective decision on where to hide, even if this was an unusually lit place. [45]

Social behavior

When reared in isolation, German cockroaches show behavior that is different from behavior when reared in a group. In one study, isolated cockroaches were less likely to leave their shelters and explore, spent less time eating, interacted less with conspecifics when exposed to them, and, among males, took longer to recognize receptive females. Because these changes occurred in many contexts, the authors suggested them as constituting a behavioral syndrome. These effects might have been due either to reduced metabolic and developmental rates in isolated individuals or the fact that the isolated individuals had not had a training period to learn about what others were like via their antennae. [46]

Individual American cockroaches appear to have consistently different "personalities" regarding how they seek shelter. In addition, group personality is not simply the sum of individual choices, but reflects conformity and collective decision-making. [47] [48]

The gregarious German and American cockroaches have elaborate social structure, chemical signaling, and "social herd" characteristics. Lihoreau and his fellow researchers stated: [37]

The social biology of domiciliary cockroaches ... can be characterized by a common shelter, overlapping generations, non-closure of groups, equal reproductive potential of group members, an absence of task specialization, high levels of social dependence, central place foraging, social information transfer, kin recognition, and a meta-population structure. [37]

There is evidence that a few species of group-living roaches in the genera Melyroidea and Aclavoidea may exhibit a reproductive division of labor, which, if confirmed, would make these the only genuinely eusocial lineage known among roaches, in contrast to the subsocial members of the genus Cryptocercus . [49]

Sounds

Some species make a buzzing noise while other cockroaches make a chirping noise. Gromphadorhina species and Archiblatta hoeveni produce sound through the modified spiracles on the fourth abdominal segment. In the former species, several different hisses are produced, including disturbance sounds, produced by adults and larger nymphs; and aggressive, courtship and copulatory sounds produced by adult males. [50] Henschoutedenia epilamproides has a stridulatory organ between its thorax and abdomen, but the purpose of the sound produced is unclear. [51]

Several Australian species practice acoustic and vibration behaviour as an aspect of courtship. They have been observed producing hisses and whistles from air forced through the spiracles. Furthermore, in the presence of a potential mate, some cockroaches tap the substrate in a rhythmic, repetitive manner. Acoustic signals may be of greater prevalence amongst perching species, particularly those that live on low vegetation in Australia's tropics. [52]

Biology

Digestive tract

Cockroaches are generally omnivorous; the American cockroach (Periplaneta americana), for example, feeds on a great variety of foodstuffs including bread, fruit, leather, starch in book bindings, paper, glue, skin flakes, hair, dead insects and soiled clothing. [53] Many species of cockroach harbor in their gut symbiotic protozoans and bacteria which are able to digest cellulose. In many species, these symbionts may be essential if the insect is to utilize cellulose; however, some species secrete cellulase in their saliva, and the wood-eating cockroach, Panesthia cribrata , is able to survive indefinitely on a diet of crystallized cellulose while being free of microorganisms. [54]

The similarity of these symbionts in the genus Cryptocercus to those in termites are such that these cockroaches have been suggested to be more closely related to termites than to other cockroaches, [55] and current research strongly supports this hypothesis about their relationships. [56] All species studied so far carry the obligate mutualistic endosymbiont bacterium Blattabacterium , with the exception of Nocticola , an Australian cave-dwelling genus without eyes, pigment or wings, which recent genetic studies indicate is a very primitive cockroach. [57] [58] It had previously been thought that all five families of cockroach were descended from a common ancestor that was infected with B. cuenoti . It may be that N. australiensis subsequently lost its symbionts, or alternatively this hypothesis will need to be re-examined. [58]

Tracheae and breathing

Like other insects, cockroaches breathe through a system of tubes called tracheae which are attached to openings called spiracles on all body segments. When the carbon dioxide level in the insect rises high enough, valves on the spiracles open and carbon dioxide diffuses out and oxygen diffuses in. The tracheal system branches repeatedly, the finest tracheoles bringing air directly to each cell, allowing gaseous exchange to take place. [59]

While cockroaches do not have lungs as do vertebrates, and can continue to respire if their heads are removed, in some very large species, the body musculature may contract rhythmically to forcibly move air in and out of the spiracles; this may be considered a form of breathing. [59]

Reproduction

Cockroaches use pheromones to attract mates, and the males practice courtship rituals, such as posturing and stridulation. Like many insects, cockroaches mate facing away from each other with their genitalia in contact, and copulation can be prolonged. A few species are known to be parthenogenetic, reproducing without the need for males. [27]

Female cockroaches are sometimes seen carrying egg cases on the end of their abdomens; the German cockroach holds about 30 to 40 long, thin eggs in a case called an ootheca. She drops the capsule prior to hatching, though live births do occur in rare instances. The egg capsule may take more than five hours to lay and is initially bright white in color. The eggs are hatched from the combined pressure of the hatchlings gulping air. The hatchlings are initially bright white nymphs and continue inflating themselves with air, becoming harder and darker within about four hours. Their transient white stage while hatching and later while molting has led to claims of albino cockroaches. [27] Development from eggs to adults takes three to four months. Cockroaches live up to a year, and the female may produce up to eight egg cases in a lifetime; in favorable conditions, she can produce 300 to 400 offspring. Other species of cockroaches, however, can produce far more eggs; in some cases a female needs to be impregnated only once to be able to lay eggs for the rest of her life. [27]

The female usually attaches the egg case to a substrate, inserts it into a suitably protective crevice, or carries it about until just before the eggs hatch. Some species, however, are ovoviviparous, keeping the eggs inside their body, with or without an egg case, until they hatch. At least one genus, Diploptera , is fully viviparous. [27]

Cockroaches have incomplete metamorphosis, meaning that the nymphs are generally similar to the adults, except for undeveloped wings and genitalia. Development is generally slow, and may take a few months to over a year. The adults are also long-lived; some have survived for as many as four years in the laboratory. [27]

Parthenogenesis

When female American cockroaches (Periplaneta americana) are housed in groups, this close association promotes parthenogenic reproduction. [60] Oothecae, a type of egg mass, are produced asexually. [60] The parthenogenetic process by which eggs are produced in P. americana is automixis. [61] During automixis, meiosis occurs, but instead of giving rise to haploid gametes as ordinarily occurs, diploid gametes are produced (probably by terminal fusion) that can then develop into female cockroaches.

Hardiness

Cockroaches are among the hardiest insects. Some species are capable of remaining active for a month without food and are able to survive on limited resources, such as the glue from the back of postage stamps. [62] Some can go without air for 45 minutes. Japanese cockroach (Periplaneta japonica) nymphs, which hibernate in cold winters, have survived twelve hours at −5 to −8 °C (23 to 18 °F) in laboratory experiments. [63]

Experiments on decapitated specimens of several species of cockroach found a variety of behavioral functionality remained, including shock avoidance and escape behavior, although many insects other than cockroaches are also able to survive decapitation, and popular claims of the longevity of headless cockroaches do not appear to be based on published research. [64] [65] The severed head is able to survive and wave its antennae for several hours, or longer when refrigerated and given nutrients. [65]

It is popularly suggested that cockroaches will "inherit the earth" if humanity destroys itself in a nuclear war. While cockroaches do, indeed, have a much higher radiation resistance than vertebrates, with a lethal dose perhaps six to 15 times that for humans, they are not exceptionally radiation-resistant compared to other insects, such as the fruit fly. [66]

The cockroach's ability to withstand radiation has been explained through the cell cycle. Cells are most vulnerable to the effects of radiation while they are dividing. A cockroach's cells divide only once each molting cycle (which is weekly, for the juvenile German cockroach [67] ). Since not all cockroaches would be molting at the same time, many would be unaffected by an acute burst of radiation, although lingering and more[ clarification needed ] acute radiation would still be harmful. [59]

Relationship with humans

Cockroaches in research: Periplaneta americana in an electrophysiology experiment "Periplaneta americana" connected to the electrophysiology equipment.JPG
Cockroaches in research: Periplaneta americana in an electrophysiology experiment
Cockroach climbing on a wall in Japan, 2018

In research and education

Because of their ease of rearing and resilience, cockroaches have been used as insect models in the laboratory, particularly in the fields of neurobiology, reproductive physiology and social behavior. [36] The cockroach is a convenient insect to study as it is large and simple to raise in a laboratory environment. This makes it suitable both for research and for school and undergraduate biology studies. It can be used in experiments on topics such as learning, sexual pheromones, spatial orientation, aggression, activity rhythms and the biological clock, and behavioral ecology. [68] Research conducted in 2014 suggests that humans fear cockroaches the most, even more than mosquitoes, due to an evolutionary aversion. [69]

As pests

Oriental cockroach feeding on human food Blatta orientalis - Wilhelma 01.jpg
Oriental cockroach feeding on human food

The Blattodea include some thirty species of cockroaches associated with humans; these species are atypical of the thousands of species in the order. [70] Of those thirty species, four are most commonly encountered as pests: the German cockroach (Blattella germanica), American cockroach (Periplaneta americana), oriental cockroach (Blatta orientalis), and brown-banded cockroach (Supella longipalpa). [71] [72]

Pest cockroaches feed on human and pet food and can leave an offensive odor. [73] They can passively transport pathogenic microbes on their body surfaces, particularly in environments such as hospitals. [74] [75] Cockroaches are linked with allergic reactions in humans. [76] [77] One of the proteins that trigger allergic reactions is tropomyosin, which can cause cross-reactive allergy to dust mites and shrimp. [78] These allergens are also linked with asthma. [79] Some species of cockroach can live for up to a month without food, so just because no cockroaches are visible in a home does not mean that they are not there. Approximately 20–48% of homes with no visible sign of cockroaches have detectable cockroach allergens in dust. [80]

Control

Many remedies have been tried in the search for control of the major pest species of cockroaches, which are resilient and fast-breeding. Household chemicals like sodium bicarbonate (baking soda) have been suggested, without evidence for their effectiveness. [81] Garden herbs including bay, catnip, mint, cucumber, and garlic have been proposed as repellents. [82] Poisoned bait containing hydramethylnon or fipronil, and boric acid powder is effective on adults. [83] Baits with egg killers are also quite effective at reducing the cockroach population. Alternatively, insecticides containing deltamethrin or pyrethrin are very effective. [83] In Singapore and Malaysia, taxi drivers use pandan leaves to repel cockroaches in their vehicles. [84] Natural methods of cockroach control have been advanced by several published studies [85] especially by Metarhizium robertsii (syn. M. anisopliae). [86]

Some parasites and predators are effective for biological control of cockroaches. Parasitoidal wasps such as Ampulex wasps sting nerve ganglia in the cockroach's thorax, causing temporary paralysis and allowing the wasp to deliver an incapacitating sting into the cockroach's brain. The wasp clips the antennae with its mandibles and drinks some hemolymph before dragging the prey to a burrow, where an egg (rarely two) is laid on it. [87] The wasp larva feeds on the subdued living cockroach. [88] [89] Another wasp considered to be a promising candidate for biological control is the ensign wasp Evania appendigaster , which attacks cockroach oothecae to lay a single egg inside. [90] [91] Ongoing research is still developing technologies allowing for mass-rearing these wasps for application releases. [92] [93] Widow spiders commonly prey on cockroaches. [94] [95]

Cockroaches can be trapped in a deep, smooth-walled jar baited with food inside, placed so that cockroaches can reach the opening, for example with a ramp of card or twigs on the outside. An inch or so of water or stale beer (by itself a cockroach attractant) in the jar can be used to drown any insects thus captured. The method works well with the American cockroach, but less so with the German cockroach. [96]

A study conducted by scientists at Purdue University concluded that the most common cockroaches in the US, Australia and Europe were able to develop a "cross resistance" to multiple types of pesticide. This contradicted previous understanding that the animals can develop resistance against one pesticide at a time. [97] The scientists suggested that cockroaches will no longer be easily controlled using a diverse spectrum of chemical pesticides and that a mix of other means, such as traps and better sanitation, will need to be employed. [97]

Researchers from Heriot-Watt University demonstrated that a power laser can, with high effectiveness, neutralise cockroaches in a home, and suggest it might be an alternative to pesticides. [98]

As food

Although considered disgusting in Western culture, cockroaches are eaten in many places around the world. [99] [100] Whereas household pest cockroaches may carry bacteria and viruses, cockroaches bred under laboratory conditions can be used to prepare nutritious food. [101] In Thailand and Mexico, the heads and legs are removed, and the remainder may be boiled, sautéed, grilled, dried, or diced. [99] Frying makes the insect crispy with soft innards that taste like cottage cheese. [102] [103] Recipes from Taiwan also call for its use in omelets. [104] [105] It can be a feeder insect for pet reptiles. [105]

Medicinal use

Cockroaches are raised in large quantities in China for the production of traditional medicine and cosmetics. [106] There are about 100 cockroach farms in the country. Running a farm involves relatively low starting and operating costs due to how hardy and easy to process the insects are. Chinese and South Korean researchers are investigating cockroaches for treating baldness, AIDS, cancer, and as a dietary supplement. [107] [108]

Other uses

Recent experiments have shown that some species of cockroaches may be used as a plastic scavenger. [109]

Conservation

While a small minority of cockroaches are associated with human habitats and viewed as repugnant by many people, a few species are of conservation concern. The Lord Howe Island wood-feeding cockroach ( Panesthia lata ) is listed as endangered by the New South Wales Scientific Committee, but the cockroach may be extinct on Lord Howe Island itself. The introduction of rats, the spread of Rhodes grass ( Chloris gayana ) and fires are possible reasons for their scarcity. [110] Two species are currently listed as endangered and critically endangered by the IUCN Red List, Delosia ornata and Nocticola gerlachi . [111] [112] Both cockroaches have a restricted distribution and are threatened by habitat loss and rising sea levels. Only 600 Delosia ornata adults and 300 nymphs are known to exist, and these are threatened by a hotel development. No action has been taken to save the two cockroach species, but protecting their natural habitats may prevent their extinction. In the former Soviet Union, cockroach populations have been declining at an alarming rate; this may be exaggerated, or the phenomenon may be temporary or cyclic. [113] One species of roach, Simandoa conserfariam , is considered extinct in the wild. [114]

Cultural depictions

Madagascar hissing cockroaches kept as pets Roachies.JPG
Madagascar hissing cockroaches kept as pets

Cockroaches were known and considered repellent but medicinally useful in Classical times. An insect named in Greek "σίλφη" (silphe) has been identified with the cockroach, though the scientific name Silpha refers to a genus of carrion beetles. It is mentioned by Aristotle, saying that it sheds its skin; it is described as foul-smelling in Aristophanes' play Peace ; Euenus called it a pest of book collections, being "page-eating, destructive, black-bodied" in his Analect. Virgil named the cockroach "Lucifuga" ("one that avoids light"). Pliny the Elder recorded the use of "Blatta" in various medicines; he describes the insect as disgusting, and as seeking out dark corners to avoid the light. [115] [116] Dioscorides recorded the use of the "Silphe", ground up with oil, as a remedy for earache. [116]

Lafcadio Hearn (1850–1904) asserted that "For tetanus cockroach tea is given. I do not know how many cockroaches go to make up the cup; but I find that faith in this remedy is strong among many of the American population of New Orleans. A poultice of boiled cockroaches is placed over the wound." He adds that cockroaches are eaten, fried with garlic, for indigestion. [117]

Several cockroach species, such as Blaptica dubia , are raised as food for insectivorous pets. [118] A few cockroach species are raised as pets, most commonly the giant Madagascar hissing cockroach, Gromphadorhina portentosa. [119] Whilst the hissing cockroaches may be the most commonly kept species, there are many species that are kept by cockroach enthusiasts; there is even a specialist society: the Blattodea Culture Group (BCG), which was a thriving organisation for about 15 years although now appears to be dormant. [120] The BCG provided a source of literature for people interested in rearing cockroaches, which was otherwise limited to either scientific papers, general insect books, or books covering a variety of exotic pets; in the absence of an inclusive book, one member published Introduction to Rearing Cockroaches, which still appears to be the only book dedicated to rearing cockroaches. [121]

Cockroaches have been used for space tests. A cockroach given the name Nadezhda was sent into space by Russian scientists as part of a Foton-M mission, during which she mated, and later became the first terrestrial animal to produce offspring that had been conceived in space. [122]

Because of their long association with humans, cockroaches are frequently referred to in popular culture. In Western culture, cockroaches are often depicted as dirty pests. [123] [124] In a 1750–1752 journal, Pehr Osbeck noted that cockroaches were frequently seen and found their way to the bakeries, after the sailing ship Gothenburg ran aground and was destroyed by rocks. [125]

Donald Harington's satirical novel The Cockroaches of Stay More (Harcourt, 1989) imagines a community of "roosterroaches" in a mythical Ozark town where the insects are named after their human counterparts. Madonna has famously quoted, "I am a survivor. I am like a cockroach, you just can't get rid of me". [126] An urban legend maintains that cockroaches are radiation-resistant, and thus would survive a nuclear war. [127] [128]

Related Research Articles

<span class="mw-page-title-main">Termite</span> Social insects related to cockroaches

Termites are a group of detritophagous eusocial insects which consume a variety of decaying plant material, generally in the form of wood, leaf litter, and soil humus. They are distinguished by their moniliform antennae and the soft-bodied and often unpigmented worker caste for which they have been commonly termed "white ants"; however, they are not ants, to which they are only distantly related. About 2,972 extant species are currently described, 2,105 of which are members of the family Termitidae.

<span class="mw-page-title-main">Dictyoptera</span> Superorder of insects

Dictyoptera is an insect superorder that includes two extant orders of polyneopterous insects: the order Blattodea and the order Mantodea (mantises). All modern Dictyoptera have short ovipositors and typically lay oothecae. The oldest fossils of Dictyoptera from the Late Carboniferous, referred to as "roachoids" have long ovipositors and did not lay oothecae. The oldest modern oothecae-laying dictyopterans date to the Late Triassic.

<span class="mw-page-title-main">Ootheca</span> Type of egg mass made by some molluscs, mantises and cockroaches

An ootheca is a type of egg capsule made by any member of a variety of species including mollusks, mantises, and cockroaches.

<span class="mw-page-title-main">American cockroach</span> Species of cockroach

The American cockroach is the largest species of common cockroach, and often considered a pest. In certain regions of the U.S. it is colloquially known as the waterbug, though it is not a true waterbug since it is not aquatic. It is also known as the ship cockroach, kakerlac, and Bombay canary. It is often misidentified as a palmetto bug.

<span class="mw-page-title-main">Florida woods cockroach</span> Species of cockroach

The Florida woods cockroach is a large cockroach species which typically grows to a length of 30–40 mm (1.2–1.6 in). When alarmed, adults can eject an extremely foul-smelling directional spray up to 1 m, which inspired several of its other common names: Florida skunk roach, Florida stinkroach, skunk cockroach, skunk roach, stinking cockroach, and stinkroach. Two other naming variations include Florida cockroach and Florida woods roach.

<i>Cryptocercus</i> Genus of cockroaches

Cryptocercus is a genus of Dictyoptera and the sole member of its own family Cryptocercidae. Species are known as wood roaches or brown-hooded cockroaches. These roaches are subsocial, their young requiring considerable parental interaction. They also share wood-digesting gut bacteria types with wood-eating termites, and are therefore seen as evidence of a close genetic relationship, that termites are essentially evolved from social cockroaches.

<span class="mw-page-title-main">Smokybrown cockroach</span> Species of cockroach

The smokybrown cockroach is a large species of cockroach, winged, and growing to a length of 32–35 millimetres (1.3–1.4 in).

<span class="mw-page-title-main">Blattodea</span> Order of insects that includes cockroaches and termites

Blattodea is an order of insects that contains cockroaches and termites. Formerly, termites were considered a separate order, Isoptera, but genetic and molecular evidence suggests they evolved from within the cockroach lineage, cladistically making them cockroaches as well. The Blattodea and the mantis are now all considered part of the superorder Dictyoptera. Blattodea includes approximately 4,400 species of cockroach in almost 500 genera, and about 3,000 species of termite in around 300 genera.

<span class="mw-page-title-main">Emerald cockroach wasp</span> Species of wasp

The emerald cockroach wasp or jewel wasp is a solitary wasp of the family Ampulicidae. It is known for its unusual reproductive behavior, which involves stinging a cockroach and using it as a host for its larvae. It thus belongs to the entomophagous parasites.

<i>Blaberus giganteus</i> Species of cockroach

Blaberus giganteus, the Central American giant cave cockroach or Brazilian cockroach, is a cockroach belonging to the family Blaberidae. One of the world's largest cockroaches, it is native to the warm parts of the Neotropical realm.

<span class="mw-page-title-main">Roachoid</span> Extinct paraphyletic group of insects

"Roachoids", also known as "Roachids", "Blattoids" or Eoblattodea, are members of the stem group of Dictyoptera. They generally resemble cockroaches, but most members, unlike modern dictyopterans, have generally long external ovipositors, and are thought not to have laid ootheca like modern dictyopterans.

<i>Ampulex</i> Genus of wasps

Ampulex is a large cosmopolitan genus of wasps belonging to the family Ampulicidae. Most of the >130 species occur in the tropics, particularly in the Old World, and fewer than 15 are known from the New World; fewer than 5 species are native to Europe or the United States, though the Old World species Ampulex compressa has spread to virtually everywhere that its host roaches can be found. The few species whose biology is known are parasitoids of cockroaches; they typically inject venom into the roach that subdues or immobilizes it, and then lay one to two eggs between the legs of the defenseless roach.

<span class="mw-page-title-main">Insect</span> Class of arthropods

Insects are hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body, three pairs of jointed legs, compound eyes, and a pair of antennae. Insects are the most diverse group of animals, with more than a million described species; they represent more than half of all animal species.

<i>Therea petiveriana</i> Species of cockroach

Therea petiveriana, variously called the desert cockroach, seven-spotted cockroach, domino cockroach, or Indian domino cockroach, is a species of crepuscular cockroach found in southern India. They are members of a basal group within the cockroaches. This somewhat roundish and contrastingly marked cockroach is mainly found on the ground in scrub forest habitats where they may burrow under leaf litter or loose soil during the heat of the day.

Blattabacterium is a genus of obligate mutualistic endosymbiont bacteria that are believed to inhabit all species of cockroach studied to date, with the exception of the genus Nocticola. The genus' presence in the termite Mastotermes darwiniensis led to speculation, later confirmed, that termites and cockroaches are evolutionarily linked.

<span class="mw-page-title-main">Mantis</span> Order of insects

Mantises are an order (Mantodea) of insects that contains over 2,400 species in about 460 genera in 33 families. The largest family is the Mantidae ("mantids"). Mantises are distributed worldwide in temperate and tropical habitats. They have triangular heads with bulging eyes supported on flexible necks. Their elongated bodies may or may not have wings, but all Mantodea have forelegs that are greatly enlarged and adapted for catching and gripping prey; their upright posture, while remaining stationary with forearms folded, has led to the common name praying mantis.

<span class="mw-page-title-main">Evolution of eusociality</span> Origins of cooperative brood care

Eusociality evolved repeatedly in different orders of animals, notably termites and the Hymenoptera. This 'true sociality' in animals, in which sterile individuals work to further the reproductive success of others, is found in termites, ambrosia beetles, gall-dwelling aphids, thrips, marine sponge-dwelling shrimp, naked mole-rats, and many genera in the insect order Hymenoptera. The fact that eusociality has evolved so often in the Hymenoptera, but remains rare throughout the rest of the animal kingdom, has made its evolution a topic of debate among evolutionary biologists. Eusocial organisms at first appear to behave in stark contrast with simple interpretations of Darwinian evolution: passing on one's genes to the next generation, or fitness, is a central idea in evolutionary biology.

<i>Evania appendigaster</i> Species of wasp

Evania appendigaster, also known as the blue-eyed ensign wasp, is a species of wasp in the family Evaniidae. Its native range is not known, but it likely originated in Asia. Today it occurs throughout the tropics and subtropics and in many temperate regions. As with the rest of its family, the blue-eyed ensign wasp is a parasitoid known for specializing on cockroach eggs.

<span class="mw-page-title-main">Turkestan cockroach</span> Species of cockroach

The Turkestan cockroach, Periplaneta lateralis, also known as the rusty red cockroach, red runner cockroach or simply rusty red, red runner, or lat, is a primarily outdoor-dwelling cockroach native to an area from northern Africa to Central Asia. Adults measure around 3 cm (1.2 in) in length. Adult males are a brownish orange or red, are slender, and have long, yellowish wings which allow it to attract females and to glide. Adult females are dark brown to black, with cream-colored markings on the shield and a cream-colored stripe edging its wings; they are broader than males, and have short vestigial wings. Nymphs are brown in front, black on the rear, and are wingless.

References

  1. 1 2 Vršanský, P.; Palková, H.; Vršanská, L.; Koubová, I.; Hinkelman, J. (2022). "Mesozoic origin-delayed explosive radiation of the cockroach family Corydiidae Saussure, 1864". Biologia. 78 (6): 1627–1658. doi:10.1007/s11756-022-01279-1. S2CID   254479766.
  2. Order Blattodea - BugGuide.net
  3. A guide to the Roaches & Termites (Order Blattodea), Grasshoppers, Crickets & Katydids (Order Orthoptera), Mantises (Order Mantodea), and Stick Insects (Order Phasmida) of Austin and Travis County, TX; USA from iNaturalist
  4. "Blattodea: roaches - Univ. of Minnesota Insect Collection". Archived from the original on 3 July 2020. Retrieved 2 July 2020.
  5. "Orthopteran | Description, Natural History, & Classification".
  6. 1 2 Beccaloni, G. W. (2014). "Cockroach Species File Online. Version 5.0".
  7. "Blattodea (Cockroaches & Termites)". CSIRO Entomology. Retrieved 21 November 2015.
  8. Harper, Douglas. "Cockroach". Online Etymology Dictionary .
  9. Gordh, G.; Headrick, D. H. (2009). A Dictionary of Entomology (2nd ed.). Wallingford: CABI. p. 200. ISBN   978-1-84593-542-9.
  10. Lewis, Charlton T.; Short, Charles. "Blatta". Perseus Digital Library. Tufts University. Retrieved 26 October 2015.
  11. Grimaldi, D. (1997). "A fossil mantis (Insecta, Mantodea) in Cretaceous amber of New Jersey: with comments on the early history of the Dictyoptera". American Museum Novitates (3204): 1–11.
  12. Garwood, R.; Sutton, M. (2010). "X-ray micro-tomography of Carboniferous stem-Dictyoptera: new insights into early insects". Biology Letters. 6 (5): 699–702. doi:10.1098/rsbl.2010.0199. PMC   2936155 . PMID   20392720.
  13. Grimaldi, David; Engel, Michael S. (2005). Evolution of the Insects. Cambridge University Press. p. 1. ISBN   978-0-521-82149-0.
  14. Garwood, R.; Ross, A.; Sotty, D.; Chabard, D.; Charbonnier, S.; Sutton, M.; Withers, P.J.; Butler, R.J. (2012). "Tomographic Reconstruction of Neopterous Carboniferous Insect Nymphs". PLOS ONE. 7 (9): e45779. Bibcode:2012PLoSO...745779G. doi: 10.1371/journal.pone.0045779 . PMC   3458060 . PMID   23049858.
  15. 1 2 3 Inward, D.; Beccaloni, G.; Eggleton, P. (2007). "Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches". Biology Letters. 3 (3): 331–335. doi:10.1098/rsbl.2007.0102. PMC   2464702 . PMID   17412673.
  16. Beccaloni, G.; Eggleton, P. (2013). Order Blattodea. In: Zhang; Z.-Q.; Survey of Taxonomic Richness (eds.). "Animal Biodiversity: An Outline of Higher-level Classification" (PDF). Zootaxa. 3703 (1): 46–48. doi:10.11646/zootaxa.3703.1.10.
  17. Cleveland, L. R.; Hall, S. K.; Sanders, E. P.; Collier, J. (1934). "The Wood-Feeding Roach Cryptocercus, Its Protozoa, and the Symbiosis between Protozoa and Roach". Memoirs of the American Academy of Arts and Sciences. 17 (2): 185–382. doi: 10.1093/aesa/28.2.216 .
  18. McKittrick, F.A. (1965). "A contribution to the understanding of cockroach-termite affinities". Annals of the Entomological Society of America. 58 (1): 18–22. doi: 10.1093/aesa/58.1.18 . PMID   5834489.
  19. Eggleton, Paul; Beccaloni, George; Inward, Daegan (2007). "Response to Lo et al". Biology Letters. 3 (5): 564–565. doi:10.1098/rsbl.2007.0367. PMC   2391203 .
  20. Lo, Nathan; Engel, Michael S.; Cameron, Stephen; Nalepa, Christine A.; Tokuda, Gaku; Grimaldi, David; Kitade, Osamu; Krishna, Kumar; Klass, Klaus-Dieter; Maekawa, Kiyoto; Miura, Toru; Thompson, Graham J. (2007). "Save Isoptera: A comment on Inward et al". Biology Letters. 3 (5): 562–563. doi:10.1098/rsbl.2007.0264. PMC   2391185 . PMID   17698448.
  21. "Pet facts: giant burrowing cockroaches". Australian Broadcasting Corporation. Archived from the original on 18 February 2014. Retrieved 3 December 2005.
  22. Huang, C. Y.; Sabree, Z. L.; Moran, N. A. (2012). "Genome Sequence of Blattabacterium sp. Strain BGIGA, Endosymbiont of the Blaberus giganteus Cockroach". Journal of Bacteriology. 194 (16): 4450–4451. doi:10.1128/jb.00789-12. PMC   3416254 . PMID   22843586.
  23. Guinness World Records. "Guinness World Records: World's Largest Cockroach".
  24. "Cockroaches hit the shelves". Natural History Museum. May 2006. Archived from the original on 19 August 2006. Retrieved 23 November 2015.
  25. Wheeler, William Morton (November 1900). "A New Myrmecophile from the Mushroom Gardens of the Texan Leaf-Cutting Ant". The American Naturalist. 34 (407): 851–862. doi: 10.1086/277806 . S2CID   85112362.
  26. 1 2 3 "Diversity of Life: Cockroach anatomy". Biology4ISC. Archived from the original on 8 December 2015. Retrieved 8 November 2015.
  27. 1 2 3 4 5 6 7 Hoell, H. V.; Doyen, J. T.; Purcell, A. H. (1998). Introduction to Insect Biology and Diversity (2nd ed.). Oxford University Press. pp. 362–364. ISBN   978-0-19-510033-4.
  28. Ritzmann, Roy E.; Quinn, Roger D.; Fischer, Martin S. (2004). "Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots" (PDF). Arthropod Structure & Development. 33 (3): 361–379. Bibcode:2004ArtSD..33..361R. doi:10.1016/j.asd.2004.05.001. PMID   18089044.
  29. Spagna, J. C.; Goldman, D.I.; Lin, P-C.; Koditschek, D. E.; Full, Robert J. (2007). "Distributed mechanical feedback control of rapid running on challenging terrain". Bioinspiration & Biomimetics. 2 (1): 9–18. Bibcode:2007BiBi....2....9S. doi:10.1088/1748-3182/2/1/002. PMID   17671322. S2CID   21564918.
  30. 1 2 Meyer, J. "Blattodea". General Entomology. University of North Carolina. Retrieved 9 November 2015.
  31. Mohs, K.; McGee, I. (2007). Animal planet: the most extreme bugs (1st ed.). John Wiley & Sons. p.  35. ISBN   978-0-7879-8663-6.
  32. "Cockroaches: Order Blattodea". Australian Museum. 13 January 2012. Retrieved 10 November 2015.
  33. Valles, S. M.; Koehler, P. G.; Brenner, R. J. (1999). "Comparative insecticide susceptibility and detoxification enzyme activities among pestiferous blattodea". Comp Infibous Biochem Physiol C Pharmacol Toxicol Endocrinol. 124 (3): 227–232. doi:10.1016/S0742-8413(99)00076-6. PMID   10661713.
  34. Schal, C.; Hamilton, R. L. (1990). "Integrated suppression of synanthropic cockroaches" (PDF). Annu. Rev. Entomol. 35: 521–551. doi:10.1146/annurev.en.35.010190.002513. PMID   2405773. Archived from the original (PDF) on 26 May 2006.
  35. Bell, William J.; Roth, Louis M.; Nalepa, Christine A. (2007). Cockroaches: Ecology, Behavior, and Natural History. JHU Press. pp. 55–58. ISBN   978-0-8018-8616-4.
  36. 1 2 3 Costa, James T. (2006). The Other Insect Societies. Harvard University Press. p. 148. ISBN   978-0-674-02163-1.
  37. 1 2 3 4 Lihoreau, M.; Costa, J.T.; Rivault, C. (November 2012). "The social biology of domiciliary cockroaches: colony structure, kin recognition and collective decisions". Insectes Sociaux. 59 (4): 445–452. doi:10.1007/s00040-012-0234-x. S2CID   10205316.
  38. Hamasaka, Yasutaka; Mohrherr, C. J.; Predel, R.; Wegener, C. (22 December 2005). "Chronobiological analysis and mass spectrometric characterization of pigment-dispersing factor in the cockroach Leucophaea maderae". The Journal of Insect Science. 5 (43): 43. doi:10.1093/jis/5.1.43. PMC   1615250 . PMID   17119625.
  39. Rust, M. K. (2007). "Cockroaches". University of California Integrated Pest Management Program. University of California. Retrieved 24 November 2015.
  40. Richman, Dina L. (1 June 2014). "Asian cockroach". featured Creatures. University of Florida. Retrieved 4 November 2015.
  41. Lihoreau, Mathieu; Deneubourg, Jean-Louis; Rivault, Colette (2010). "Collective foraging decision in a gregarious insect". Behavioral Ecology and Sociobiology. 64 (10): 1577–1587. Bibcode:2010BEcoS..64.1577L. doi:10.1007/s00265-010-0971-7. S2CID   35375594.
  42. Ame, Jean-Marc; Rivault, Colette; Deneubourg, Jean-Louis (October 2004). "Cockroach aggregation based on strain odour recognition". Animal Behaviour. 68 (4): 793–801. doi:10.1016/j.anbehav.2004.01.009. S2CID   7295380.
  43. Jeanson, Raphael; Rivault, Colette; Deneubourg, Jean-Louis; Blanco, Stephane; Fournier, Richard; Jost, Christian; Theraulaz, Guy (January 2005). "Self-organized aggregation in cockroaches". Animal Behaviour. 69 (1): 169–180. doi:10.1016/j.anbehav.2004.02.009. S2CID   16747884.
  44. Havens, Timothy C.; Spain, Christopher J.; Salmon, Nathan G.; Keller, James M. (2008). "Roach Infestation Optimization". 2008 IEEE Swarm Intelligence Symposium. IEEE. pp. 1–7. doi:10.1109/sis.2008.4668317. hdl: 10355/2092 . ISBN   978-1-4244-2704-8. There are many function optimization algorithms based on the collective behavior of natural systems - Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) are two of the most popular. This paper presents a new adaptation of the PSO algorithm, entitled Roach Infestation Optimization (RIO), that is inspired by recent discoveries in the social behavior of cockroaches.
  45. Lemonick, Michael D. (15 November 2007). "Robotic Roaches Do the Trick". Time . Archived from the original on 16 November 2007. Retrieved 24 November 2015.
  46. Lihoreau, Mathieu; Brepson, Loïc; Rivault, Colette (2009). "The weight of the clan: Even in insects, social isolation can induce a behavioural syndrome". Behavioural Processes. 82 (1): 81–84. doi:10.1016/j.beproc.2009.03.008. PMID   19615616. S2CID   20809920.
  47. Planas-Sitjà, Isaac; Deneubourg, Jean-Louis; Gibon, Céline; Sempo, Grégory (2015). "Group personality during collective decision-making: a multi-level approach" (PDF). Proc. R. Soc. B. 282 (1802): 20142515. doi:10.1098/rspb.2014.2515. PMC   4344149 . PMID   25652834.
  48. Morell, Virginia (3 February 2015). "Even cockroaches have personalities". Science. Science. doi:10.1126/science.aaa7797 . Retrieved 19 February 2015.
  49. Hinkelman, Jan; Vršanský, Peter; Garcia, Thierry; Tejedor, Adrian; Bertner, Paul; Sorokin, Anton; Gallice, Geoffrey R.; Koubová, Ivana; Nagy, Štefan; Vidlička, Ľubomír (2020). "Neotropical Melyroidea group cockroaches reveal various degrees of (eu)sociality". The Science of Nature. 107 (5): 39. Bibcode:2020SciNa.107...39H. doi:10.1007/s00114-020-01694-x. PMID   32870399.
  50. Nelson, Margaret C. (1979). "Sound production in the cockroach, Gromphadorhina portentosa: The sound-producing apparatus". Journal of Comparative Physiology . 132 (1): 27–38. doi:10.1007/BF00617729. S2CID   45902616.
  51. Guthrie, D.M. (1966). "Sound production and reception in a cockroach". Journal of Experimental Biology. 45 (2): 321–328. doi:10.1242/jeb.45.2.321.
  52. Rentz, David (2014). A Guide to the Cockroaches of Australia. CSIRO Publishing. ISBN   978-0-643-10320-7.
  53. Bell, William J.; Adiyodi, K. G. (1981). American Cockroach. Springer. p. 4. ISBN   978-0-412-16140-7.
  54. Slaytor, Michael (1992). "Cellulose digestion in termites and cockroaches: What role do symbionts play?". Comparative Biochemistry and Physiology B. 103 (4): 775–784. doi:10.1016/0305-0491(92)90194-V.
  55. Eggleton, P. (2001). "Termites and trees: a review of recent advances in termite phylogenetics". Insectes Sociaux. 48 (3): 187–193. doi:10.1007/PL00001766. S2CID   20011989.
  56. Lo, N.; Bandi, C.; Watanabe, H.; Nalepa, C.; Beninati, T. (2003). "Evidence for Cocladogenesis Between Diverse Dictyopteran Lineages and Their Intracellular Endosymbionts". Molecular Biology and Evolution. 20 (6): 907–13. doi: 10.1093/molbev/msg097 . PMID   12716997.
  57. Leung, Chee Chee (22 March 2007). "Cave may hold missing link". The Age. Retrieved 24 November 2015.
  58. 1 2 Lo, N.; Beninati, T.; Stone, F.; Walker, J.; Sacchi, L. (2007). "Cockroaches that lack Blattabacterium endosymbionts: The phylogenetically divergent genus Nocticola". Biology Letters. 3 (3): 327–30. doi:10.1098/rsbl.2006.0614. PMC   2464682 . PMID   17376757.
  59. 1 2 3 "The Cockroach FAQ". University of Massachusetts. Retrieved 24 November 2015.
  60. 1 2 Katoh, K.; Iwasaki, M.; Hosono, S.; Yoritsune, A.; Ochiai, M.; Mizunami, M.; Nishino, H. (2017). "Group-housed females promote production of asexual ootheca in American cockroaches". Zoological Letters. 3: 3. doi: 10.1186/s40851-017-0063-x . PMC   5348754 . PMID   28331632.
  61. Tanaka, M.; Daimon, T. (2019). "First molecular genetic evidence for automictic parthenogenesis in cockroaches". Insect Science. 26 (4): 649–655. Bibcode:2019InsSc..26..649T. doi:10.1111/1744-7917.12572. PMID   29389065. S2CID   3879178.
  62. Mullen, Gary; Durden, Lance, eds. (2002). Medical and Veterinary Entomology. Amsterdam: Academic Press. p. 32. ISBN   978-0-12-510451-7.
  63. Tanaka, K.; Tanaka, S. (1997). "Winter Survival and Freeze Tolerance in a Northern Cockroach, Periplaneta japonica (Blattidae: Dictyoptera)". Zoological Science. 14 (5): 849–853. doi: 10.2108/zsj.14.849 . S2CID   86223379.
  64. Berenbaum, May (30 September 2009). The Earwig's Tail: A Modern Bestiary of Multi-legged Legends. Harvard University Press. pp. 53–54. ISBN   978-0-674-03540-9.
  65. 1 2 Choi, Charles (15 March 2007). "Fact or fiction?: a cockroach can live without its head". Scientific American. Retrieved 27 December 2013.
  66. Kruszelnicki, Karl S. (23 February 2006). "Cockroaches and Radiation". ABC Science. Retrieved 24 November 2015.
  67. Kunkel JG. (1966). Development and the availability of food in the German cockroach, Blattella germanica (L.). J. Insect Physiol. 12, 227-235.
  68. Bell, W. J. (2012) [1981]. The Laboratory Cockroach: Experiments in cockroach anatomy, physiology and behavior. Springer. ISBN   978-94-011-9726-7.
  69. "Cockroaches: The insect we're programmed to fear". BBC. 18 September 2014.
  70. Gullan, P. J.; Cranston, P. S. (2014). The Insects: An Outline of Entomology. Wiley. p. 508. ISBN   978-1-118-84615-5.
  71. Glover, Emily (30 July 2024). "5 Common Types Of Cockroaches". Forbes . Forbes Media. Retrieved 19 August 2024.
  72. "Common Pest Cockroaches". Ecolab . 20 March 2024. Retrieved 19 August 2024.
  73. Brenner, R.J.; Koehler, P.; Patterson, R.S. (1987). "Health Implications of Cockroach Infestations". Infestations in Med. 4 (8): 349–355.
  74. Rivault, C.; Cloarec, A.; Guyader, A. Le (1993). "Bacterial load of cockroaches in relation to urban environment". Epidemiology and Infection. 110 (2): 317–325. doi:10.1017/S0950268800068254. PMC   2272268 . PMID   8472775.
  75. Elgderi, R.M.; Ghenghesh, K.S.; Berbash, N. (2006). "Carriage by the German cockroach (Blattella germanica) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospitals and households in Tripoli, Libya". Ann Trop Med Parasitol. 100 (1): 55–62. doi:10.1179/136485906X78463. PMID   16417714. S2CID   29755450.
  76. Bernton, H.S.; Brown, H. (1964). "Insect Allergy Preliminary Studies of the Cockroach". J. Allergy. 35 (506–513): 506–13. doi:10.1016/0021-8707(64)90082-6. PMID   14226309.
  77. Kutrup, B (2003). "Cockroach Infestation in Some Hospitals in Trabzon, Turkey" (PDF). Turk. J. Zool. 27: 73–77. Archived from the original (PDF) on 4 February 2006. Retrieved 2 August 2008.
  78. Santos AB, Chapman MD, Aalberse RC, Vailes LD, Ferriani VP, et al. (1999). "Cockroach allergens and asthma in Brazil: identification of tropomyosin as a major allergen with potential cross-reactivity with mite and shrimp allergens". The Journal of Allergy and Clinical Immunology. 104 (2): 329–37. doi:10.1016/S0091-6749(99)70375-1. PMID   10452753.
  79. Kang, B.; Vellody, D.; Homburger, H.; Yunginger, J. W. (1979). "Cockroach cause of allergic asthma. Its specificity and immunologic profile". The Journal of Allergy and Clinical Immunology. 63 (2): 80–86. doi: 10.1016/0091-6749(79)90196-9 . PMID   83332.
  80. Eggleston, P.A.; Arruda, L.K. (2001). "Ecology and elimination of cockroaches and allergens in the home". Journal of Allergy and Clinical Immunology. 107 (3): S422–S429. doi: 10.1067/mai.2001.113671 . PMID   11242603. S2CID   28424188.
  81. "Best Home Remedies To Kill And Control Cockroaches – Baking Soda". HRT.whw1.com. Archived from the original on 20 June 2015. Retrieved 20 June 2015.
  82. "Best Home Remedies To Kill And Control Cockroaches – Catnip". HRT.whw1.com. Archived from the original on 20 June 2015. Retrieved 20 June 2015.
  83. 1 2 "Cockroaches". Alamance County Department of Environmental Health. Archived from the original on 12 March 2009. Retrieved 11 May 2008.
  84. Li J. and Ho S.H. Pandan leaves (Pandanus amaryllifolius Roxb.) As A Natural Cockroach Repellent Archived 10 January 2017 at the Wayback Machine . Proceedings of the 9th National Undergraduate Research Opportunities Programme (13 September 2003).
  85. Ashley Dunn (NYT 24 April 1994) Wary of the Dangers of Insecticides, Scientists Have Developed Techniques For Killing the Ultimate Urban Pest In Safer, Ecologically Sensitive Ways
  86. Zimmermann, Gisbert (2007). "Review on safety of the entomopathogenic fungus Metarhizium anisopliae". Biocontrol Science and Technology . 17 (9). Taylor & Francis: 879–920. Bibcode:2007BioST..17..879Z. doi:10.1080/09583150701593963. ISSN   0958-3157. S2CID   84614415.
  87. Paterson Fox, Eduardo Gonçalves; Bressan-Nascimento, Suzete; Eizemberg, Roberto (September 2009). "Notes on the Biology and Behaviour of the Jewel Wasp, Ampulex compressa (Fabricius, 1781) (Hymenoptera; Ampulicidae), in the Laboratory, Including First Record of Gregarious Reproduction". Entomological News. 120 (4): 430–437. doi:10.3157/021.120.0412. S2CID   83564852.
  88. Fox, Eduardo G P; Buys, Sandor Cristiano; Mallet, Jace-Nir Reis Dos Santos; Bressan-Nacimento, Suzete (3 August 2006). "On the morphology of the juvenile stages of Ampulex compressa (Fabricius 1781) (Hymenoptera, Ampulicidae)" (PDF). Zootaxa. 1279 (1): 43. doi:10.11646/zootaxa.1279.1.2. hdl: 11449/69026 .
  89. Piper, Ross (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals . Greenwood Press. ISBN   9780313339226.
  90. Fox, Eduardo G P (10 May 2011). "Evania appendigaster Development". YouTube. Archived from the original on 30 October 2021.
  91. Fox, Eduardo Gonçalves Paterson; Solis, Daniel Russ; Rossi, Mônica Lanzoni; Eizemberg, Roberto; Taveira, Luiz Pilize; Bressan-Nascimento, Suzete (June 2012). "The preimaginal stages of the ensign wasp Evania appendigaster (Hymenoptera, Evaniidae), a cockroach egg predator". Invertebrate Biology. 131 (2): 133–143. doi: 10.1111/j.1744-7410.2012.00261.x .
  92. Bressan-Nascimento, S.; Oliveira, D.M.P.; Fox, E.G.P. (December 2008). "Thermal requirements for the embryonic development of Periplaneta americana (L.) (Dictyoptera: Blattidae) with potential application in mass-rearing of egg parasitoids". Biological Control. 47 (3): 268–272. Bibcode:2008BiolC..47..268B. doi:10.1016/j.biocontrol.2008.09.001.
  93. Bressan-Nascimento, S.; Fox, E.G.P.; Pilizi, L.G.T. (February 2010). "Effects of different temperatures on the life history of Evania appendigaster L. (Hymenoptera: Evaniidae), a solitary oothecal parasitoid of Periplaneta americana L. (Dictyoptera: Blattidae)". Biological Control. 52 (2): 104–109. Bibcode:2010BiolC..52..104B. doi:10.1016/j.biocontrol.2009.10.005.
  94. "What Do Black Widows Eat?". Orkin.com. 11 April 2018. Archived from the original on 20 July 2020. Retrieved 30 July 2021.
  95. Black widow spider
  96. Herms, William Brodbeck (1915). Medical and Veterinary Entomology. MacMillan. p.  44.
  97. 1 2 Wahlquist, Calla (3 July 2019). "Cockroaches could soon be almost impossible to kill with pesticides". The Guardian. ISSN   0261-3077 . Retrieved 4 July 2019.
  98. Rakhmatulin, I., Lihoreau, M., Pueyo, J. (2022). "Selective neutralisation and deterring of cockroaches with laser automated by machine vision". Oriental Insects. 57 (2). tandfonline: 728–745. doi: 10.1080/00305316.2022.2121777 . S2CID   252457820.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  99. 1 2 Marion Copeland [2004]. Cockroach (Pages 86 to 88). Published by Reaktion Books
  100. Ronald L. Taylor, Barbara J. Carter [1976]. Entertaining with Insects: Or, The Original Guide to Insect Cookery. Published by Woodbridge Press Publishing Company.
  101. David George Gordon [1998]. The Eat-a-bug Cookbook (Page 78). Published by Ten Speed Press.
  102. Malcolm Moore [2013]. How to eat a cockroach: a Telegraph guide. Published by Washington Post.
  103. [2015]. How cockroaches could save lives. Published by BBC News.
  104. Richard Schweid [2015]. The Cockroach Papers: A Compendium of History and Lore (Page 69). Published by University of Chicago Press.
  105. 1 2 Charlier, Phillip (23 June 2023). "Taiwanese man creates culinary masterpiece: cockroach omelet". Taiwan English News.
  106. David McKenzie [2014]. Eating cockroaches in China: Healing and delicious?. Published by CNN.
  107. Chen, Stephen (19 April 2018). "A giant indoor farm in China is breeding 6 billion cockroaches a year. Here's why". South China Morning Post . Retrieved 20 April 2018.
  108. Demick, Barbara (15 October 2013). "Cockroach farms multiplying in China". Los Angeles Times . Retrieved 20 April 2018.
  109. Li MX, Yang SS, Ding J, Ding MQ, He L, Xing DF, Criddle CS, Benbow ME, Ren NQ, Wu WM (5 November 2024). "Cockroach Blaptica dubia biodegrades polystyrene plastics: Insights for superior ability, microbiome and host genes" . J Hazard Mater. 479: 135756–135756. doi:10.1016/j.jhazmat.2024.135756. PMID   39255668.
  110. "Lord Howe Island wood-feeding cockroach – endangered species listing". Office of Environment and Heritage. Government of New South Wales. 2011. Retrieved 10 November 2015.
  111. Gerlach, J. (2012). "Delosia ornata". IUCN Red List of Threatened Species . 2012: e.T199490A2593559. doi: 10.2305/IUCN.UK.2012.RLTS.T199490A2593559.en .
  112. Gerlach, J. (2012). "Nocticola gerlachi". IUCN Red List of Threatened Species . 2012: e.T199508A2595807. doi: 10.2305/IUCN.UK.2012.RLTS.T199508A2595807.en .
  113. "Исчезновение тараканов на Белгородчине не связано с радиацией". Bel.ru (in Russian). 4 December 2006. Archived from the original on 16 October 2013. Retrieved 24 November 2015.
  114. Roth, Louis M.; Naskrecki, Piotr (2004). "A new genus and species of cave cockroach (Blaberidae: Oxyhaloinae) from Guinea, West Africa". Journal of Orthoptera Research . 13 (1): 57–61. doi:10.1665/1082-6467(2004)013[0057:ANGASO]2.0.CO;2. ISSN   1082-6467.
  115. Anthon, Charles (1843). Smith, William (ed.). A Dictionary of Greek and Roman Antiquities (3rd American ed.). New York – Cincinnati – Chicago: American Book Company. p. 161.
  116. 1 2 Lockyer, Norman (1871). Nature. Macmillan Journals. p. 27.
  117. Hearn, Lafcadio; Starr, S. Frederick (2001). Inventing New Orleans: Writings of Lafcadio Hearn. University Press of Mississippi. pp. 68–69. ISBN   978-1-57806-353-6.
  118. Wu, Hao; Appel, Arthur G.; Hu, Xing Ping (2013). "Instar Determination of Blaptica dubia (Blattodea: Blaberidae) Using Gaussian Mixture Models". Annals of the Entomological Society of America. 106 (3): 323–328. doi: 10.1603/AN12131 . ISSN   0013-8746.
  119. Mulder, Phil. "Madagascar Hissing Cockroaches: Information and Care" (PDF). Oklahoma 4-H Youth Development. Oklahoma State University. Archived from the original (PDF) on 2 November 2013. Retrieved 31 October 2013.
  120. "Blattodea Culture Group". Blattodea-culture-group.org. Archived from the original on 20 August 2021. Retrieved 10 November 2017.
  121. Bragg, P.E. (1997) An Introduction to Rearing Cockroaches. P.E. Bragg, Ilkeston.
  122. ""Hope" the Russian cockroach gives birth to first space babies". RIA Novosti. 23 October 2007. Retrieved 24 November 2015.
  123. Berle, D. (2007). "Graded Exposure Therapy for Long-Standing Disgust-Related Cockroach Avoidance in an Older Male". Clinical Case Studies. 6 (4): 339–347. doi:10.1177/1534650106288965. hdl: 1959.4/unsworks_42620 . S2CID   145501916.
  124. Botella, C.M.; Juan, M. C.; Baños, R. M.; Alcañiz, M.; Guillén, V.; Rey, B. (2005). "Mixing Realities? An Application of Augmented Reality for the Treatment of Cockroach Phobia". CyberPsychology & Behavior. 8 (2): 162–171. doi:10.1089/cpb.2005.8.162. PMID   15938656.
  125. Klausnitzer, B. (1987). Insects: their biology and cultural history . New York: Universe Books. p.  42. ISBN   978-0-87663-666-4.
  126. Madonna. "Madonna". Thinkexist.com. Retrieved 29 April 2012. I am a survivor. I am like a cockroach, you just can't get rid of me
  127. "Cockroaches are not radiation-proof and most are not pests". BBC Earth. Retrieved 1 June 2018.
  128. "Cockroaches are not radiation-proof and most are not pests". Third party appears to have reposted the original, for which the original URL doesn't seem to work. 4 October 2016. Retrieved 29 August 2022.