Hydrobiology

Last updated
An example of a mountain lake ecosystem Lake Benmore with surrounding hills, New Zealand 02.jpg
An example of a mountain lake ecosystem

Hydrobiology is the science of life and life processes in water. Much of modern hydrobiology can be viewed as a sub-discipline of ecology but the sphere of hydrobiology includes taxonomy, economic and industrial biology, morphology, and physiology. The one distinguishing aspect is that all fields relate to aquatic organisms. Most work is related to limnology and can be divided into lotic system ecology (flowing waters) and lentic system ecology (still waters).

Contents

One of the significant areas of current research is eutrophication. Special attention is paid to biotic interactions in plankton assemblage including the microbial loop, the mechanism of influencing algal blooms, phosphorus load, and lake turnover. Another subject of research is the acidification of mountain lakes. [1] [2] Long-term studies are carried out on changes in the ionic composition of the water of rivers, [3] lakes and reservoirs in connection with acid rain and fertilization. One goal of current research is elucidation of the basic environmental functions of the ecosystem in reservoirs, [4] which are important for water quality management and water supply.

Algal Bloom from Cyclone Veronica Algal bloom from Cyclone Veronica.jpg
Algal Bloom from Cyclone Veronica

Much of the early work of hydrobiologists concentrated on the biological processes utilized in sewage treatment and water purification especially slow sand filters. Other historically important work sought to provide biotic indices for classifying waters according to the biotic communities that they supported. This work continues to this day in Europe in the development of classification tools for assessing water bodies for the EU water framework directive. [5]

A hydrobiologist technician conducts field analysis for hydrobiology. They identify plants and living species, locate their habitat, and count them. They also identify pollutants and nuisances that can affect the aquatic fauna and flora. They take the samples and write reports of their observations for publications.

A hydrobiologist engineer intervenes more in the process of the study. They define the intervention protocols and what samples should be taken. They plan and program the study campaigns, and then summarize their results. In the event of pollution, they propose solutions to improve the biological quality of water within the framework of the regulations in force. In the case of complex programs, hydrobiologists can work in a multidisciplinary team with botanists and zoologists.

The hydrobiologist works on behalf of large public institutions of a scientific and technological nature (CNRS, INRA, IRD, CIRAD, IRSTEA ...), public institutions (Water Agencies, Regional Directorates environment, Higher Council of Fisheries, CEMAGREF ...), companies (EDF, Veolia environment, Suez environment, Saur, ...), local authorities, research departments, and associations (Federations of fishing, Permanent Centers for Environmental Initiatives ...).

Training and studies

The biologist technician usually has a training level bac +2 or bac +3:

- DUT biological engineering options biological and biochemical analyzes (ABB), environmental engineering,

- BTSA water professions

- BTS GEMEAU - water management and control

- BTS and regional controls

- BTSA Agricultural, Biological and Biotechnological Analyzes (ANABIOTEC)

- DEUST analysis of biological media

- Bachelor's degree in biology

The engineer in hydrobiology has a training level bac +5:

- engineering school diploma: INA, ENSA, Polytech Montpellier sciences and water technologies

- master's degree in environmental sciences or biology (training examples)

environmental management and coastal ecology (University of La Rochelle)

biology of organisms and populations (University of Burgundy)

continental and coastal environments sciences Environment, Soils, Waters and Biodiversity (University of Rouen)

operation and restoration of continental aquatic environments (University of Clermont Ferrand), etc.

Field of research interests

The following are the research interests of Hydrobiologists:

Organizations

Journals

Notable researchers

See also

Related Research Articles

<span class="mw-page-title-main">Eutrophication</span> Excessive plant growth in response to excess nutrient availability

Eutrophication is the process by which an entire body of water, or parts of it, becomes progressively enriched with minerals and nutrients, particularly nitrogen and phosphorus. It has also been defined as "nutrient-induced increase in phytoplankton productivity". Water bodies with very low nutrient levels are termed oligotrophic and those with moderate nutrient levels are termed mesotrophic. Advanced eutrophication may also be referred to as dystrophic and hypertrophic conditions. Eutrophication can affect freshwater or salt water systems. In freshwater ecosystems it is almost always caused by excess phosphorus. In coastal waters on the other hand, the main contributing nutrient is more likely to be nitrogen, or nitrogen and phosphorus together. This depends on the location and other factors.

<span class="mw-page-title-main">Limnology</span> Science of inland aquatic ecosystems

Limnology is the study of inland aquatic ecosystems. The study of limnology includes aspects of the biological, chemical, physical, and geological characteristics of fresh and saline, natural and man-made bodies of water. This includes the study of lakes, reservoirs, ponds, rivers, springs, streams, wetlands, and groundwater. Water systems are often categorized as either running (lotic) or standing (lentic).

Freshwater ecosystems are a subset of Earth's aquatic ecosystems. They include lakes, ponds, rivers, streams, springs, bogs, and wetlands. They can be contrasted with marine ecosystems, which have a larger salt content. Freshwater habitats can be classified by different factors, including temperature, light penetration, nutrients, and vegetation. There are three basic types of freshwater ecosystems: Lentic, lotic and wetlands. Freshwater ecosystems contain 41% of the world's known fish species.

<span class="mw-page-title-main">Fisheries science</span> Academic discipline of managing and understanding fisheries

Fisheries science is the academic discipline of managing and understanding fisheries. It is a multidisciplinary science, which draws on the disciplines of limnology, oceanography, freshwater biology, marine biology, meteorology, conservation, ecology, population dynamics, economics, statistics, decision analysis, management, and many others in an attempt to provide an integrated picture of fisheries. In some cases new disciplines have emerged, as in the case of bioeconomics and fisheries law. Because fisheries science is such an all-encompassing field, fisheries scientists often use methods from a broad array of academic disciplines. Over the most recent several decades, there have been declines in fish stocks (populations) in many regions along with increasing concern about the impact of intensive fishing on marine and freshwater biodiversity.

<span class="mw-page-title-main">Aquatic ecosystem</span> Ecosystem in a body of water

An aquatic ecosystem is an ecosystem found in and around a body of water, in contrast to land-based terrestrial ecosystems. Aquatic ecosystems contain communities of organisms—aquatic life—that are dependent on each other and on their environment. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems. Freshwater ecosystems may be lentic ; lotic ; and wetlands.

<span class="mw-page-title-main">Paleolimnology</span> Scientific study of ancient lakes and streams

Paleolimnology is a scientific sub-discipline closely related to both limnology and paleoecology. Paleolimnological studies focus on reconstructing the past environments of inland waters using the geologic record, especially with regard to events such as climatic change, eutrophication, acidification, and internal ontogenic processes.

<span class="mw-page-title-main">Human impact on the nitrogen cycle</span>

Human impact on the nitrogen cycle is diverse. Agricultural and industrial nitrogen (N) inputs to the environment currently exceed inputs from natural N fixation. As a consequence of anthropogenic inputs, the global nitrogen cycle (Fig. 1) has been significantly altered over the past century. Global atmospheric nitrous oxide (N2O) mole fractions have increased from a pre-industrial value of ~270 nmol/mol to ~319 nmol/mol in 2005. Human activities account for over one-third of N2O emissions, most of which are due to the agricultural sector. This article is intended to give a brief review of the history of anthropogenic N inputs, and reported impacts of nitrogen inputs on selected terrestrial and aquatic ecosystems.

<span class="mw-page-title-main">Trophic state index</span> Measure of the ability of water to sustain biological productivity

The Trophic State Index (TSI) is a classification system designed to rate water bodies based on the amount of biological productivity they sustain. Although the term "trophic index" is commonly applied to lakes, any surface water body may be indexed.

<span class="mw-page-title-main">Wild fisheries</span> Area containing fish that are harvested commercially

A wild fishery is a natural body of water with a sizeable free-ranging fish or other aquatic animal population that can be harvested for its commercial value. Wild fisheries can be marine (saltwater) or lacustrine/riverine (freshwater), and rely heavily on the carrying capacity of the local aquatic ecosystem.

Aquatic science is the study of the various bodies of water that make up our planet including oceanic and freshwater environments. Aquatic scientists study the movement of water, the chemistry of water, aquatic organisms, aquatic ecosystems, the movement of materials in and out of aquatic ecosystems, and the use of water by humans, among other things. Aquatic scientists examine current processes as well as historic processes, and the water bodies that they study can range from tiny areas measured in millimeters to full oceans. Moreover, aquatic scientists work in Interdisciplinary groups. For example, a physical oceanographer might work with a biological oceanographer to understand how physical processes, such as tropical cyclones or rip currents, affect organisms in the Atlantic Ocean. Chemists and biologists, on the other hand, might work together to see how the chemical makeup of a certain body of water affects the plants and animals that reside there. Aquatic scientists can work to tackle global problems such as global oceanic change and local problems, such as trying to understand why a drinking water supply in a certain area is polluted.

Landscape limnology is the spatially explicit study of lakes, streams, and wetlands as they interact with freshwater, terrestrial, and human landscapes to determine the effects of pattern on ecosystem processes across temporal and spatial scales. Limnology is the study of inland water bodies inclusive of rivers, lakes, and wetlands; landscape limnology seeks to integrate all of these ecosystem types.

David William Schindler,, was an American/Canadian limnologist. He held the Killam Memorial Chair and was Professor of Ecology in the Department of Biological Sciences at the University of Alberta in Edmonton, Alberta. He was notable for "innovative large-scale experiments" on whole lakes at the Experimental Lakes Area (ELA) which proved that "phosphorus controls the eutrophication in temperate lakes leading to the banning of phosphates in detergents. He was also known for his research on acid rain. In 1989, Schindler moved from the ELA to continue his research at the University of Alberta in Edmonton, with studies into fresh water shortages and the effects of climate disruption on Canada's alpine and northern boreal ecosystems. Schindler's research had earned him numerous national and international awards, including the Gerhard Herzberg Gold Medal, the First Stockholm Water Prize (1991) the Volvo Environment Prize (1998), and the Tyler Prize for Environmental Achievement (2006).

<span class="mw-page-title-main">Stephen R. Carpenter</span> American lake ecologist

Stephen Russell Carpenter is an American lake ecologist who focuses on lake eutrophication which is the over-enrichment of lake ecosystems leading to toxic blooms of micro-organisms and fish kills.

<span class="mw-page-title-main">Planktivore</span> Aquatic organism that feeds on planktonic food

A planktivore is an aquatic organism that feeds on planktonic food, including zooplankton and phytoplankton. Planktivorous organisms encompass a range of some of the planet's smallest to largest multicellular animals in both the present day and in the past billion years; basking sharks and copepods are just two examples of giant and microscopic organisms that feed upon plankton. Planktivory can be an important mechanism of top-down control that contributes to trophic cascades in aquatic and marine systems. There is a tremendous diversity of feeding strategies and behaviors that planktivores utilize to capture prey. Some planktivores utilize tides and currents to migrate between estuaries and coastal waters; other aquatic planktivores reside in lakes or reservoirs where diverse assemblages of plankton are present, or migrate vertically in the water column searching for prey. Planktivore populations can impact the abundance and community composition of planktonic species through their predation pressure, and planktivore migrations facilitate nutrient transport between benthic and pelagic habitats.

<span class="mw-page-title-main">Aquatic-terrestrial subsidies</span>

Energy, nutrients, and contaminants derived from aquatic ecosystems and transferred to terrestrial ecosystems are termed aquatic-terrestrial subsidies or, more simply, aquatic subsidies. Common examples of aquatic subsidies include organisms that move across habitat boundaries and deposit their nutrients as they decompose in terrestrial habitats or are consumed by terrestrial predators, such as spiders, lizards, birds, and bats. Aquatic insects that develop within streams and lakes before emerging as winged adults and moving to terrestrial habitats contribute to aquatic subsidies. Fish removed from aquatic ecosystems by terrestrial predators are another important example. Conversely, the flow of energy and nutrients from terrestrial ecosystems to aquatic ecosystems are considered terrestrial subsidies; both aquatic subsidies and terrestrial subsidies are types of cross-boundary subsidies. Energy and nutrients are derived from outside the ecosystem where they are ultimately consumed.

<span class="mw-page-title-main">Freshwater acidification</span>

Freshwater acidification occurs when acidic inputs enter a body of fresh water through the weathering of rocks, invasion of acidifying gas, or by the reduction of acid anions, like sulfate and nitrate within a lake. Freshwater acidification is primarily caused by sulfur oxides (SOx) and nitrogen oxides (NOx) entering the water from atmospheric depositions and soil leaching. Carbonic acid and dissolved carbon dioxide can also enter freshwaters, in a similar manner associated with runoff, through carbon dioxide-rich soils. Runoff that contains these compounds may incorporate acidifying hydrogen ions and inorganic aluminum, which can be toxic to marine organisms. Acid rain is also a contributor to freshwater acidification. It is created when SOx and NOx react with water, oxygen, and other oxidants within the clouds.

<span class="mw-page-title-main">Benthic-pelagic coupling</span> Processes that connect the benthic and pelagic zones of a body of water

Benthic-pelagic coupling are processes that connect the benthic zone and the pelagic zone through the exchange of energy, mass, or nutrients. These processes play a prominent role in both freshwater and marine ecosystems and are influenced by a number of chemical, biological, and physical forces that are crucial to functions from nutrient cycling to energy transfer in food webs.

Ashley H. Moerke is an American ecologist and a professor at Lake Superior State University. Her research focuses on freshwater ecosystem management, especially around the Great Lakes. Moerke advises local and state governments and bi-national commissions on water science, fisheries, and other environmental issues. In 2020, she was chosen as president-elect of the Society for Freshwater Science.

<span class="mw-page-title-main">Alpine lake</span> High-altitude lake in a mountainous zone

An alpine lake is a high-altitude lake in a mountainous area, usually near or above the tree line, with extended periods of ice cover. These lakes are commonly glacial lakes formed from glacial activity but can also be formed from geological processes such as volcanic activity or landslides. Many alpine lakes that are fed from glacial meltwater have the characteristic bright turquoise green color as a result of glacial flour, suspended minerals derived from a glacier scouring the bedrock. When active glaciers are not supplying water to the lake, such as a majority of Rocky Mountains alpine lakes in the United States, the lakes may still be bright blue due to the lack of algal growth resulting from cold temperatures, lack of nutrient run-off from surrounding land, and lack of sediment input. The coloration and mountain locations of alpine lakes attract lots of recreational activity.

<span class="mw-page-title-main">Water clarity</span> How deeply visible light penetrates through water

Water clarity is a descriptive term for how deeply visible light penetrates through water. In addition to light penetration, the term water clarity is also often used to describe underwater visibility. Water clarity is one way that humans measure water quality, along with oxygen concentration and the presence or absence of pollutants and algal blooms.

References

  1. Kopáček, Jiří; Kaňa, Jiří; Bičárová, Svetlana; Brahney, Janice; Navrátil, Tomáš; Norton, Stephen A.; Porcal, Petr; Stuchlík, Evžen (2019-09-06). "Climate change accelerates recovery of the Tatra Mountain lakes from acidification and increases their nutrient and chlorophyll a concentrations". Aquatic Sciences. 81 (4): 70. doi:10.1007/s00027-019-0667-7. ISSN   1420-9055. S2CID   201848799.
  2. Beamish, Richard J.; Harvey, Harold H. (2011-04-13). "Acidification of the La Cloche Mountain Lakes, Ontario, and Resulting Fish Mortalities". Journal of the Fisheries Board of Canada. 29 (8): 1131–1143. doi:10.1139/f72-169.
  3. Qu, Bin; Zhang, Yulan; Kang, Shichang; Sillanpää, Mika (2019-02-01). "Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the "Water Tower of Asia"". Science of the Total Environment. 649: 571–581. Bibcode:2019ScTEn.649..571Q. doi:10.1016/j.scitotenv.2018.08.316. ISSN   0048-9697. PMID   30176468. S2CID   52169676.
  4. 1 2 Galizia Tundisi, José (2018-08-01). "Reservoirs: New challenges for ecosystem studies and environmental management". Water Security. 4–5: 1–7. Bibcode:2018WatSe...4....1G. doi:10.1016/j.wasec.2018.09.001. ISSN   2468-3124. S2CID   240294270.
  5. "Introduction to the EU Water Framework Directive - Environment - European Commission". ec.europa.eu. Retrieved 2022-03-01.
  6. Doney, Scott C.; Busch, D. Shallin; Cooley, Sarah R.; Kroeker, Kristy J. (2020-10-17). "The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities". Annual Review of Environment and Resources. 45 (1): 83–112. doi: 10.1146/annurev-environ-012320-083019 . ISSN   1543-5938. S2CID   225741986.
  7. Moser, Katrina A.; Hundey, Elizabeth J.; Sia, Maria E.; Doyle, Rebecca M.; Dunne, Holly; Longstaffe, Fred J. (2020-05-01). "Factors Leading to Increased Algal Production in Mountain Lakes: A Paleolimnological Perspective from the Uinta Mountains, Utah, USA". EGU General Assembly Conference Abstracts: 5995. Bibcode:2020EGUGA..22.5995M. doi: 10.5194/egusphere-egu2020-5995 . S2CID   229149953.
  8. Bekker, Eugeniya I.; Karabanov, Dmitry P.; Galimov, Yan R.; Haag, Christoph R.; Neretina, Tatiana V.; Kotov, Alexey A. (2018-03-15). "Phylogeography of Daphnia magna Straus (Crustacea: Cladocera) in Northern Eurasia: Evidence for a deep longitudinal split between mitochondrial lineages". PLOS ONE. 13 (3): e0194045. Bibcode:2018PLoSO..1394045B. doi: 10.1371/journal.pone.0194045 . ISSN   1932-6203. PMC   5854346 . PMID   29543844.
  9. Shemi, Adva; Alcolombri, Uria; Schatz, Daniella; Farstey, Viviana; Vincent, Flora; Rotkopf, Ron; Ben-Dor, Shifra; Frada, Miguel J.; Tawfik, Dan S.; Vardi, Assaf (November 2021). "Dimethyl sulfide mediates microbial predator–prey interactions between zooplankton and algae in the ocean". Nature Microbiology. 6 (11): 1357–1366. doi:10.1038/s41564-021-00971-3. ISSN   2058-5276. PMID   34697459. S2CID   239887075.
  10. Jůza, Tomáš; Duras, Jindřich; Blabolil, Petr; Sajdlová, Zuzana; Hess, Josef; Chocholoušková, Zdeňka; Kubečka, Jan (2019-10-01). "Recovery of the Velky Bolevecky pond (Plzen, Czech Republic) via biomanipulation – Key study for management". Ecological Engineering. 136: 167–176. doi:10.1016/j.ecoleng.2019.06.025. ISSN   0925-8574. S2CID   198334918.
  11. Hecky, R. E.; Bootsma, H. A.; Mugidde, R. M.; Bugenyi, F. W. B. (1996), "Phosphorus Pumps, Nitrogen Sinks, and Silicon Drains: Plumbing Nutrients in the African Great Lakes", The Limnology, Climatology and Paleoclimatology of the East African Lakes, Routledge, doi:10.1201/9780203748978-11, ISBN   978-0-203-74897-8, S2CID   202197067 , retrieved 2022-03-01

Citations