Rheotaxis

Last updated

(Positive) Rheotaxis is a form of taxis seen in many aquatic organisms, [1] e.g., fish, whereby they will (generally) turn to face into an oncoming current. In a flowing stream, this behavior leads them to hold their position rather than being swept downstream by the current. Rheotaxis has been noted in zebrafish and other species, [2] and is found in most major aquatic invertebrate groups. [3] Rheotaxis is important for animal survival because the positioning of an animal in the water can increase its chance of accessing food and lower the amount of energy it spends, especially when it remains stationary. [1] Some organisms such as eels will exhibit negative rheotaxis where they will turn away from and avoid oncoming currents. [4] This action is a part of their tendency to want to migrate. [4] Some zooplankton also exhibit positive or negative rheotaxis. [5]

In fish, the lateral line system is used to determine changes in the oncoming flow pattern of a body of water, and the corresponding orientation of the animal toward or away from the current. [6] The lateral line sensory system consists of mechanosensory hair cells that detect the movement of water. [3] Animals can also use rheotaxis in conjunction with other methods to orient themselves in the water. For example, sea lamprey will use the flow of the current to identify upstream chemical stimuli, and position themselves towards the direction of the signal. [7]

Rheotaxis is also a phenomenon seen in small scale artificial systems. Recently, it was observed that certain self-propelled particles (gold-platinum nanorods) will rheotax and reorient themselves against the flow in small microfluidic channels. [8]

Related Research Articles

<span class="mw-page-title-main">Zebrafish</span> Species of fish

The zebrafish is a freshwater fish belonging to the minnow family (Cyprinidae) of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio. It is also found in private ponds.

<span class="mw-page-title-main">Metamorphosis</span> Profound change in body structure during the postembryonic development of an organism

Metamorphosis is a biological process by which an animal physically develops including birth transformation or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation. Some insects, fish, amphibians, mollusks, crustaceans, cnidarians, echinoderms, and tunicates undergo metamorphosis, which is often accompanied by a change of nutrition source or behavior. Animals can be divided into species that undergo complete metamorphosis ("holometaboly"), incomplete metamorphosis ("hemimetaboly"), or no metamorphosis ("ametaboly").

<span class="mw-page-title-main">Hagfish</span> Family of eel-shaped, slime-producing animal

Hagfish, of the class Myxini and order Myxiniformes, are eel-shaped, slime-producing marine fish. They are the only known living animals that have a skull but no vertebral column, although hagfish do have rudimentary vertebrae. Along with lampreys, hagfish are jawless; the two form the sister group to jawed vertebrates, and living hagfish remain similar to hagfish from around 300 million years ago.

<span class="mw-page-title-main">Agnatha</span> Infraphylum of jawless fish

Agnatha is an infraphylum of jawless fish in the phylum Chordata, subphylum Vertebrata, consisting of both present (cyclostomes) and extinct species. Among recent animals, cyclostomes are sister to all vertebrates with jaws, known as gnathostomes.

<span class="mw-page-title-main">Eel life history</span>

The eel is a long, thin bony fish of the order Anguilliformes. The species has a catadromous life cycle, that is: at different stages of development migrating between inland waterways and the deep ocean. Because fishermen never caught anything they recognized as young eels, the life cycle of the eel was a mystery for a very long period of scientific history.

<span class="mw-page-title-main">Saccopharyngiforms</span> Order of fishes

The saccopharyngiformes are a derived lineage of unusual eels within the order Anguilliformes, and includes families Cyematidae, Monognathidae, Eurypharyngidae, Saccopharyngidae, and the proposed family Neocyematidae. Most of the fish in this group are deep-dwelling and rarely seen, typically known from only a handful of specimens. Species include recognizable fish such as pelican eels and bobtail eels. Some can live deep in the ocean, well into the aphotic zone, approximately 500 to 1,800 meters deep. Extensive research has not been conducted on them due to being indirectly observed, with some species known only from their larvae. All families except for the exceptionally rare individuals of proposed family Neoceymatidae are found in all major oceans.

<span class="mw-page-title-main">Lateral line</span> Anatomical feature

The lateral line, also called the lateral line organ (LLO), is a system of sensory organs found in fish, used to detect movement, vibration, and pressure gradients in the surrounding water. The sensory ability is achieved via modified epithelial cells, known as hair cells, which respond to displacement caused by motion and transduce these signals into electrical impulses via excitatory synapses. Lateral lines serve an important role in schooling behavior, predation, and orientation. Fish can use their lateral line system to follow the vortices produced by fleeing prey. Lateral lines are usually visible as faint lines of pores running lengthwise down each side, from the vicinity of the gill covers to the base of the tail. In some species, the receptive organs of the lateral line have been modified to function as electroreceptors, which are organs used to detect electrical impulses, and as such, these systems remain closely linked. Most amphibian larvae and some fully aquatic adult amphibians possess mechanosensitive systems comparable to the lateral line.

<span class="mw-page-title-main">Superior colliculus</span> Structure in the midbrain

In neuroanatomy, the superior colliculus is a structure lying on the roof of the mammalian midbrain. In non-mammalian vertebrates, the homologous structure is known as the optic tectum, or optic lobe. The adjective form tectal is commonly used for both structures.

<span class="mw-page-title-main">Fish locomotion</span> Ways that fish move around

Fish locomotion is the various types of animal locomotion used by fish, principally by swimming. This is achieved in different groups of fish by a variety of mechanisms of propulsion, most often by wave-like lateral flexions of the fish's body and tail in water, and in various specialised fish by motions of the fins. The major forms of locomotion in fish are:

<span class="mw-page-title-main">Ampullae of Lorenzini</span> Sensory organs in some fish that detect electrical fields

Ampullae of Lorenzini are electroreceptors, sense organs able to detect electric fields. They form a network of mucus-filled pores in the skin of cartilaginous fish and of basal bony fishes such as reedfish, sturgeon, and lungfish. They are associated with and evolved from the mechanosensory lateral line organs of early vertebrates. Most bony fishes and terrestrial vertebrates have lost their ampullae of Lorenzini.

<span class="mw-page-title-main">Limbless vertebrate</span> Vertebrates without legs or fins

Many vertebrates have evolved limbless, limb-reduced, or apodous forms. Reptiles have on a number of occasions evolved into limbless forms – snakes, amphisbaenia, and legless lizards. The same is true of amphibians – caecilians, Sirenidae, Amphiumidae and at least three extinct groups. Larval amphibians, tadpoles, are also often limbless.

<span class="mw-page-title-main">Escape response</span>

Escape response, escape reaction, or escape behavior is a mechanism by which animals avoid potential predation. It consists of a rapid sequence of movements, or lack of movement, that position the animal in such a way that allows it to hide, freeze, or flee from the supposed predator. Often, an animal's escape response is representative of an instinctual defensive mechanism, though there is evidence that these escape responses may be learned or influenced by experience.

Marine larval ecology is the study of the factors influencing dispersing larvae, which many marine invertebrates and fishes have. Marine animals with a larva typically release many larvae into the water column, where the larvae develop before metamorphosing into adults.

<span class="mw-page-title-main">Marine vertebrate</span> Marine animals with a vertebrate column

Marine vertebrates are vertebrates that live in marine environments. These are the marine fish and the marine tetrapods. Vertebrates are a subphylum of chordates that have a vertebral column (backbone). The vertebral column provides the central support structure for an internal skeleton. The internal skeleton gives shape, support, and protection to the body and can provide a means of anchoring fins or limbs to the body. The vertebral column also serves to house and protect the spinal cord that lies within the column.

The Mauthner cells are a pair of big and easily identifiable neurons located in the rhombomere 4 of the hindbrain in fish and amphibians that are responsible for a very fast escape reflex. The cells are also notable for their unusual use of both chemical and electrical synapses.

<span class="mw-page-title-main">Undulatory locomotion</span>

Undulatory locomotion is the type of motion characterized by wave-like movement patterns that act to propel an animal forward. Examples of this type of gait include crawling in snakes, or swimming in the lamprey. Although this is typically the type of gait utilized by limbless animals, some creatures with limbs, such as the salamander, forgo use of their legs in certain environments and exhibit undulatory locomotion. In robotics this movement strategy is studied in order to create novel robotic devices capable of traversing a variety of environments.

TRPN is a member of the transient receptor potential channel family of ion channels, which is a diverse group of proteins thought to be involved in mechanoreception. The TRPN gene was given the name no mechanoreceptor potential C (nompC) when it was first discovered in fruit flies, hence the N in TRPN. Since its discovery in fruit flies, TRPN homologs have been discovered and characterized in worms, frogs, and zebrafish.

<span class="mw-page-title-main">Electric eel</span> Genus of fishes in South America

The electric eels are a genus, Electrophorus, of neotropical freshwater fish from South America in the family Gymnotidae. They are known for their ability to stun their prey by generating electricity, delivering shocks at up to 860 volts. Their electrical capabilities were first studied in 1775, contributing to the invention in 1800 of the electric battery.

An Artificial Lateral Line (ALL) is a biomimetic lateral line system. A lateral line is a system of sensory organs in aquatic animals such as fish, that serves to detect movement, vibration, and pressure gradients in their environment. An artificial lateral line is an artificial biomimetic array of distinct mechanosensory transducers that, similarly, permits the formation of a spatial-temporal image of the sources in immediate vicinity based on hydrodynamic signatures; the purpose is to assist in obstacle avoidance and object tracking. The biomimetic lateral line system has the potential to improve navigation in underwater vehicles when vision is partially or fully compromised. Underwater navigation is challenging due to the rapid attenuation of radio frequency and Global Positioning System signals. In addition, ALL systems can overcome some of the drawbacks in traditional localization techniques like SONAR and optical imaging.

<span class="mw-page-title-main">Blue butterfish</span> Species of fish

The blue butterfish, is a species of pelagic fish in the genus Stromateus.

References

  1. 1 2 Elder, John; Coombs, Sheryl (21 May 2015). "The influence of turbulence on the sensory basis of rheotaxis". Journal of Comparative Physiology A. 201 (7): 667–680. doi:10.1007/s00359-015-1014-7. ISSN   1432-1351. PMID   25994410. S2CID   17702032.
  2. Oteiza, Pablo; Odstrcil, Iris; Lauder, George; Portugues, Ruben; Engert, Florian (2017). "A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish". Nature. 547 (7664): 445–448. doi:10.1038/nature23014. PMC   5873946 . PMID   28700578.
  3. 1 2 Suli, Arminda; Watson, Glen M.; Rubel, Edwin W.; Raible, David W. (16 February 2012). "Rheotaxis in Larval Zebrafish Is Mediated by Lateral Line Mechanosensory Hair Cells". PLOS ONE. 7 (2): e29727. Bibcode:2012PLoSO...729727S. doi: 10.1371/journal.pone.0029727 . ISSN   1932-6203. PMC   3281009 . PMID   22359538.
  4. 1 2 Du Colombier, SB; Bolliet, V; Bardonnet, A (2009). "Swimming activity and behaviour of European Anguilla anguilla glass eels in response to photoperiod and flow reversal and the role of energy status". Journal of Fish Biology. 74 (9): 2002–13. doi:10.1111/j.1095-8649.2009.02269.x. PMID   20735685.
  5. Holzner, Markus; Souissi, Sami; Fouxon, Itzhak; Michalec, François-Gaël (26 December 2017). "Zooplankton can actively adjust their motility to turbulent flow". Proceedings of the National Academy of Sciences. 114 (52): E11199–E11207. Bibcode:2017PNAS..11411199M. doi: 10.1073/pnas.1708888114 . ISSN   1091-6490. PMC   5748176 . PMID   29229858.
  6. Brown, Erika E. A.; Simmons, Andrea Megela (21 November 2016). "Variability of Rheotaxis Behaviors in Larval Bullfrogs Highlights Species Diversity in Lateral Line Function". PLOS ONE. 11 (11): e0166989. Bibcode:2016PLoSO..1166989B. doi: 10.1371/journal.pone.0166989 . ISSN   1932-6203. PMC   5117756 . PMID   27870909.
  7. Choi, Jongeun; Jeon, Soo; Johnson, Nicholas S; Brant, Cory O; Li, Weiming (7 November 2013). "Odor-conditioned rheotaxis of the sea lamprey: modeling, analysis and validation". Bioinspiration & Biomimetics. 8 (4): 046011. Bibcode:2013BiBi....8d6011C. doi:10.1088/1748-3182/8/4/046011. ISSN   1748-3182. PMID   24200699. S2CID   15280201.
  8. Baker, Remmi; Kauffman, Joshua E.; Laskar, Abhrajit; Shklyaev, Oleg E.; Potomkin, Mykhailo; Dominguez-Rubio, Leonardo; Shum, Henry; Cruz-Rivera, Yareslie; Aranson, Igor S.; Balazs, Anna C.; Sen, Ayusman (6 June 2019). "Fight the flow: the role of shear in artificial rheotaxis for individual and collective motion". Nanoscale. 11 (22): 10944–10951. doi:10.1039/C8NR10257K. ISSN   2040-3372. PMID   31139774. S2CID   206138930.