Aquatic biomonitoring is the science of inferring the ecological condition of rivers, lakes, streams, and wetlands by examining the organisms (fish, invertebrates, insects, plants, and algae) that live there. While aquatic biomonitoring is the most common form of biomonitoring, any ecosystem can be studied in this manner.
Aquatic biomonitoring is an important tool for assessing aquatic life forms and their habitats. It can reveal the overall health and status of the ecosystem, detect environmental trends and the impacts of different stressors, and can be used to evaluate the effect that various human activities have on the overall health of aquatic environments. [1] [2] Water pollution and general stresses to aquatic life have a major impact on the environment. The main sources of pollution to oceans, rivers, and lakes are human caused events or activities, such as sewage, oil spills, surface runoff, littering, ocean mining, and nuclear waste.
Monitoring aquatic life can also be beneficial in monitoring and understanding adjacent land ecosystems. Rapid changes to an environment, like, pollution, can alter ecosystems and community assemblages, and endanger species that live in or close to water. Many aquatic species serve as food sources for terrestrial species, which are therefore impacted by the size and health of aquatic populations.
Aquatic invertebrates, most popularly the larvae of the caddis fly sp., are responsive to climate change, low levels of pollution and temperature change. [3] [4] As a result, they have the longest history of use in biomonitoring programs. [5] Additionally, macroscopic species: frogs, fish, and some plant species, as well as, many forms of microscopic life, like bacteria and protozoa are used as indicator organisms in a variety of applications, storm water run-off among them. [6]
Many species of Macroalgae (including Cyanobacteria, though not technically a true algae [7] ) are also used in biomonitoring for both aquatic and marine environments, as their short lifespan makes them very reactive to changes. [8] [9]
A biomonitoring assessment requires a baseline dataset which, ideally, defines the environment in its natural or default state. [10] This is then used for comparison against any subsequent measurements, in order to assess potential alterations or trends.
In some cases, these datasets are used to create standardised tools for assessing water quality via biomonitoring data, such as the Specific Pollution Index (SPI) and South African Diatom Index (SADI). [11]
Water quality is graded both on appearance, for example: clear, cloudy, full of algae, and chemistry. [16] Determining the specific levels of enzymes, bacteria, metals, and minerals found in water is extremely important. Some contaminants, such as metals and certain organic wastes, can be lethal to individual creatures and could thereby ultimately lead to extinction of certain species. [12] This could affect both aquatic and land ecosystems and cause disruption in other biomes and ecosystems.
Water body temperature is one of the most ubiquitous variables collected in aquatic biomonitoring. Temperatures at the water surface, through the water column, and in the lowest levels of the water body (benthic zone) can all provide insight into different aspects of an aquatic ecosystem. Water temperature is directly affected by climate change and can have negative affects on many aquatic species, such as salmon. [17] [18] Salmon spawning is temperature dependant: there is a heat accumulation threshold which must be reached before hatching can occur. Post-hatching, salmon live in water within a critical range in temperature, with exposure to temperatures outside of this being potentially lethal. [19] This sensitivity makes them useful indicators of changes in water temperature, hence their use in climate change studies. Similarly, Daphnia populations have been evidenced as being negatively affected by climate change, as earlier springs have caused hatching periods to de-couple from the peak window of food availability. [20]
Species community assemblages and changes therein can help researchers to infer changes in the health of an ecosystem. In typical unpolluted temperate streams of Europe and North America, certain insect taxa predominate. Mayflies (Ephemeroptera), caddisflies (Trichoptera), and stoneflies (Plecoptera) are the most common insects in these undisturbed streams. In contrast, in rivers disturbed by urbanization, agriculture, forestry, and other perturbations, flies (Diptera), and especially midges (family Chironomidae) predominate.
Surface water can be affected by local geology, as minerals leached from sub-surface rocks can enter surface water bodies and influence water chemistry. Examples of this are the Werii River (Tigray, Ethiopia), where elevated concentrations of heavy metals have been linked to the underlying slate, and drinking wells in Indigenous communities near Anchorage, Alaska, where high concentrations of arsenic have been linked to the underlying McHugh Complex rock formation. [21]
Water quality refers to the chemical, physical, and biological characteristics of water based on the standards of its usage. It is most frequently used by reference to a set of standards against which compliance, generally achieved through treatment of the water, can be assessed. The most common standards used to monitor and assess water quality convey the health of ecosystems, safety of human contact, extent of water pollution and condition of drinking water. Water quality has a significant impact on water supply and often determines supply options.
Water pollution is the contamination of water bodies, with a negative impact on their uses. It is usually a result of human activities. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources. These are sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution may affect either surface water or groundwater. This form of pollution can lead to many problems. One is the degradation of aquatic ecosystems. Another is spreading water-borne diseases when people use polluted water for drinking or irrigation. Water pollution also reduces the ecosystem services such as drinking water provided by the water resource.
Freshwater ecosystems are a subset of Earth's aquatic ecosystems. They include lakes, ponds, rivers, streams, springs, bogs, and wetlands. They can be contrasted with marine ecosystems, which have a larger salt content. Freshwater habitats can be classified by different factors, including temperature, light penetration, nutrients, and vegetation. There are three basic types of freshwater ecosystems: Lentic, lotic and wetlands. Freshwater ecosystems contain 41% of the world's known fish species.
Aquatic toxicology is the study of the effects of manufactured chemicals and other anthropogenic and natural materials and activities on aquatic organisms at various levels of organization, from subcellular through individual organisms to communities and ecosystems. Aquatic toxicology is a multidisciplinary field which integrates toxicology, aquatic ecology and aquatic chemistry.
Thermal pollution, sometimes called "thermal enrichment", is the degradation of water quality by any process that changes ambient water temperature. Thermal pollution is the rise or drop in the temperature of a natural body of water caused by human influence. Thermal pollution, unlike chemical pollution, results in a change in the physical properties of water. A common cause of thermal pollution is the use of water as a coolant by power plants and industrial manufacturers. Urban runoff—stormwater discharged to surface waters from rooftops, roads, and parking lots—and reservoirs can also be a source of thermal pollution. Thermal pollution can also be caused by the release of very cold water from the base of reservoirs into warmer rivers.
A bioindicator is any species or group of species whose function, population, or status can reveal the qualitative status of the environment. The most common indicator species are animals. For example, copepods and other small water crustaceans that are present in many water bodies can be monitored for changes that may indicate a problem within their ecosystem. Bioindicators can tell us about the cumulative effects of different pollutants in the ecosystem and about how long a problem may have been present, which physical and chemical testing cannot.
RIVPACS is an aquatic biomonitoring system for assessing water quality in freshwater rivers in the United Kingdom. It is based on the macroinvertebrate species found at the study site during sampling. Some of these species are tolerant to pollution, low dissolved oxygen, and other stressors, but others are sensitive; organisms vary in their tolerances. Therefore, different species will usually be found, in different proportions, at different river sites of varying quality. Some organisms are especially good indicator species. The species found at the reference sites collectively make up the species assemblage for that site and are the basis for a statistical comparison between reference sites and non-reference sites. The comparison between the expected species and the observed species can then be used to estimate this aspect of the ecological health of a river.
An aquatic ecosystem is an ecosystem found in and around a body of water, in contrast to land-based terrestrial ecosystems. Aquatic ecosystems contain communities of organisms—aquatic life—that are dependent on each other and on their environment. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems. Freshwater ecosystems may be lentic ; lotic ; and wetlands.
Periphyton is a complex mixture of algae, cyanobacteria, heterotrophic microbes, and detritus that is attached to submerged surfaces in most aquatic ecosystems. The related term Aufwuchs refers to the collection of small animals and plants that adhere to open surfaces in aquatic environments, such as parts of rooted plants.
Biological integrity is associated with how "pristine" an environment is and its function relative to the potential or original state of an ecosystem before human alterations were imposed. Biological integrity is built on the assumption that a decline in the values of an ecosystem's functions are primarily caused by human activity or alterations. The more an environment and its original processes are altered, the less biological integrity it holds for the community as a whole. If these processes were to change over time naturally, without human influence, the integrity of the ecosystem would remain intact. The integrity of the ecosystem relies heavily on the processes that occur within it because those determine what organisms can inhabit an area and the complexities of their interactions. Most of the applications of the notion of biological integrity have addressed aquatic environments, but there have been efforts to apply the concept to terrestrial environments. Determining the pristine condition of the ecosystem is in theory scientifically derived, but deciding which of the many possible states or conditions of an ecosystem is the appropriate or desirable goal is a political or policy decision and is typically the focus of policy and political disagreements. Ecosystem health is a related concept but differs from biological integrity in that the "desired condition" of the ecosystem or environment is explicitly based on the values or priorities of society.
An index of biological integrity (IBI), also called an index of biotic integrity, is a scientific tool typically used to identify and classify water pollution problems, although there have been some efforts to apply the idea to terrestrial environments. An IBI associates anthropogenic influences on a water body with biological activity in the water body, and is formulated using data developed from biosurveys. Biological integrity is associated with how "pristine" an environment is and its function relative to the potential or original state of an ecosystem before human alterations were imposed. Biological integrity is built on the assumption that a decline in the values of an ecosystem's functions are primarily caused by human activity or alterations. The more an environment and its original processes are altered, then by definition, the less biological integrity it holds for the community as a whole. If these processes were to change over time naturally, without human influence, the integrity of the ecosystem would remain intact. Similar to the concept of ecosystem health, the integrity of the ecosystem relies heavily on the processes that occur within it because those determine which organisms can inhabit an area and the complexities of their interactions. Deciding which of the many possible states or conditions of an ecosystem is appropriate or desirable is a political or policy decision.
A pond is a small, still, land-based body of water formed by pooling inside a depression, either naturally or artificially. A pond is smaller than a lake and there are no official criteria distinguishing the two, although defining a pond to be less than 5 hectares in area, less than 5 metres (16 ft) in depth and with less than 30% with emergent vegetation helps in distinguishing the ecology of ponds from those of lakes and wetlands. Ponds can be created by a wide variety of natural processes, or they can simply be isolated depressions filled by runoff, groundwater, or precipitation, or all three of these. They can be further divided into four zones: vegetation zone, open water, bottom mud and surface film. The size and depth of ponds often varies greatly with the time of year; many ponds are produced by spring flooding from rivers. Ponds are usually freshwater but may be brackish in nature. Saltwater pools, with a direct connection to the sea to maintain full salinity, may sometimes be called 'ponds' but these are normally regarded as part of the marine environment. They do not support fresh or brackish water-based organisms, and are rather tidal pools or lagoons.
Freshwater biology is the scientific biological study of freshwater ecosystems and is a branch of limnology. This field seeks to understand the relationships between living organisms in their physical environment. These physical environments may include rivers, lakes, streams, ponds, reservoirs, or wetlands. Knowledge from this discipline is also widely used in industrial processes to make use of biological processes involved with sewage treatment and water purification. Water presence and flow is an essential aspect to species distribution and influences when and where species interact in freshwater environments.
A biosurvey, or biological survey, is a scientific study of organisms to assess the condition of an ecological resource, such as a water body.
Freshwater environmental quality parameters are those chemical, physical and biological parameters that can be used to characterise a freshwater body. Because almost all water bodies are dynamic in their composition, the relevant quality parameters are typically expressed as a range of expected concentrations.
A glacier stream is a channelized area that is formed by a glacier in which liquid water accumulates and flows. Glacial streams are also commonly referred to as "glacier stream" or/and "glacial meltwater stream". The movement of the water is influenced and directed by gravity and the melting of ice. The melting of ice forms different types of glacial streams such as supraglacial, englacial, subglacial and proglacial streams. Water enters supraglacial streams that sit at the top of the glacier via filtering through snow in the accumulation zone and forming slush pools at the FIRN zone. The water accumulates on top of the glacier in supraglacial lakes and into supraglacial stream channels. The meltwater then flows through various different streams either entering inside the glacier into englacial channels or under the glacier into subglacial channels. Finally, the water leaves the glacier through proglacial streams or lakes. Proglacial streams do not only act as the terminus point but can also receive meltwater. Glacial streams can play a significant role in energy exchange and in the transport of meltwater and sediment.
Macroinvertebrate Community Index (MCI) is an index used in New Zealand to measure the water quality of fresh water streams. The presence or lack of macroinvertebrates such as insects, worms and snails in a river or stream can give a biological indicator on the health of that waterway. The MCI assigns a number to each species of macroinvertebrate based on the sensitivity of that species to pollution. The index then calculates an average score. A higher score on the MCI generally indicates a more healthy stream.
DNA barcoding is an alternative method to the traditional morphological taxonomic classification, and has frequently been used to identify species of aquatic macroinvertebrates. Many are crucial indicator organisms in the bioassessment of freshwater and marine ecosystems.
DNA barcoding of algae is commonly used for species identification and phylogenetic studies. Algae form a phylogenetically heterogeneous group, meaning that the application of a single universal barcode/marker for species delimitation is unfeasible, thus different markers/barcodes are applied for this aim in different algal groups.
Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids. The term excludes seawater and brackish water, but it does include non-salty mineral-rich waters, such as chalybeate springs. Fresh water may encompass frozen and meltwater in ice sheets, ice caps, glaciers, snowfields and icebergs, natural precipitations such as rainfall, snowfall, hail/sleet and graupel, and surface runoffs that form inland bodies of water such as wetlands, ponds, lakes, rivers, streams, as well as groundwater contained in aquifers, subterranean rivers and lakes.
{{cite journal}}
: CS1 maint: numeric names: authors list (link){{cite journal}}
: CS1 maint: numeric names: authors list (link){{cite journal}}
: CS1 maint: numeric names: authors list (link){{cite book}}
: CS1 maint: location missing publisher (link) CS1 maint: others (link)