Gravitaxis

Last updated

Gravitaxis (or geotaxis [1] ) is a form of taxis characterized by the directional movement of an organism in response to gravity. [2]

Contents

There are a few different causes for gravitaxis. Many microorganisms have receptors like statocysts that allow them to sense the direction of gravity and to adjust their orientation accordingly. However, gravitaxis can result also from a purely physical mechanism so that organs for sensing the direction of gravity are not necessary. An example is given by microorganisms with a center of mass that is shifted to one end of the organism. Similar to a buoy, such mass-anisotropic microorganisms orient upwards under gravity. It has been shown that even an asymmetry in the shape of microorganisms can be sufficient to cause gravitaxis. [3]

Gravitaxis is different from gravitropism in a way that the latter is more about the growth response of an organism to gravity.

Taxis

Taxis is a behavioral response of a cell or an organism to an external stimulus. The movement is characteristically directional. The movement may be positive or negative. A positive taxis is one in which the organism or a cell gravitates towards the source of stimulation (attraction). A negative taxis is when the organism or a cell moves away from the source of stimulation (repulsion).

Examples

It can be seen in many microorganisms including Euglena. [4] The response of planktonic larvae of Lithodes aequispinus (king crab) to gravity is another example of gravitaxis. [1] They show both positive and negative gravitaxis responses in a way that they move either upward (negative) or downward (positive). Gravitaxis can also be observed in Drosophila. [5]

Etymology

The term is coined from gravi- meaning gravity, and taxis or the movement of an organism in response to a stimulus.

See also

Related Research Articles

<span class="mw-page-title-main">Chemotaxis</span> Movement of an organism or entity in response to a chemical stimulus

Chemotaxis is the movement of an organism or entity in response to a chemical stimulus. Somatic cells, bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemicals in their environment. This is important for bacteria to find food by swimming toward the highest concentration of food molecules, or to flee from poisons. In multicellular organisms, chemotaxis is critical to early development and development as well as in normal function and health. In addition, it has been recognized that mechanisms that allow chemotaxis in animals can be subverted during cancer metastasis. The aberrant chemotaxis of leukocytes and lymphocytes also contribute to inflammatory diseases such as atherosclerosis, asthma, and arthritis. Sub-cellular components, such as the polarity patch generated by mating yeast, may also display chemotactic behavior.

A taxis is the movement of an organism in response to a stimulus such as light or the presence of food. Taxes are innate behavioural responses. A taxis differs from a tropism in that in the case of taxis, the organism has motility and demonstrates guided movement towards or away from the stimulus source. It is sometimes distinguished from a kinesis, a non-directional change in activity in response to a stimulus.

<span class="mw-page-title-main">Stimulus (physiology)</span> Detectable change in the internal or external surroundings

In physiology, a stimulus is a detectable change in the physical or chemical structure of an organism's internal or external environment. The ability of an organism or organ to detect external stimuli, so that an appropriate reaction can be made, is called sensitivity (excitability). Sensory receptors can receive information from outside the body, as in touch receptors found in the skin or light receptors in the eye, as well as from inside the body, as in chemoreceptors and mechanoreceptors. When a stimulus is detected by a sensory receptor, it can elicit a reflex via stimulus transduction. An internal stimulus is often the first component of a homeostatic control system. External stimuli are capable of producing systemic responses throughout the body, as in the fight-or-flight response. In order for a stimulus to be detected with high probability, its level of strength must exceed the absolute threshold; if a signal does reach threshold, the information is transmitted to the central nervous system (CNS), where it is integrated and a decision on how to react is made. Although stimuli commonly cause the body to respond, it is the CNS that finally determines whether a signal causes a reaction or not.

Stimulus modality, also called sensory modality, is one aspect of a stimulus or what is perceived after a stimulus. For example, the temperature modality is registered after heat or cold stimulate a receptor. Some sensory modalities include: light, sound, temperature, taste, pressure, and smell. The type and location of the sensory receptor activated by the stimulus plays the primary role in coding the sensation. All sensory modalities work together to heighten stimuli sensation when necessary.

<span class="mw-page-title-main">Tropism</span> Directed growth of an organism in response to environmental stimuli

In biology, a tropism is a phenomenon indicating growth or turning movement of an organism, usually a plant, in response to an environmental stimulus. In tropisms, this response is dependent on the direction of the stimulus. Tropisms are usually named for the stimulus involved; for example, a phototropism is a reaction to sunlight.

<span class="mw-page-title-main">Gravitropism</span> Plant growth in reaction to gravity

Gravitropism is a coordinated process of differential growth by a plant in response to gravity pulling on it. It also occurs in fungi. Gravity can be either "artificial gravity" or natural gravity. It is a general feature of all higher and many lower plants as well as other organisms. Charles Darwin was one of the first to scientifically document that roots show positive gravitropism and stems show negative gravitropism. That is, roots grow in the direction of gravitational pull and stems grow in the opposite direction. This behavior can be easily demonstrated with any potted plant. When laid onto its side, the growing parts of the stem begin to display negative gravitropism, growing upwards. Herbaceous (non-woody) stems are capable of a degree of actual bending, but most of the redirected movement occurs as a consequence of root or stem growth outside. The mechanism is based on the Cholodny–Went model which was proposed in 1927, and has since been modified. Although the model has been criticized and continues to be refined, it has largely stood the test of time.

<span class="mw-page-title-main">Motion perception</span>

Motion perception is the process of inferring the speed and direction of elements in a scene based on visual, vestibular and proprioceptive inputs. Although this process appears straightforward to most observers, it has proven to be a difficult problem from a computational perspective, and difficult to explain in terms of neural processing.

Thermotropism or thermotropic movement is the movement of an organism or a part of an organism in response to heat or changes from the environment's temperature. A common example is the curling of Rhododendron leaves in response to cold temperatures. Mimosa pudica also show thermotropism by the collapsing of leaf petioles leading to the folding of leaflets, when temperature drops.

Chemotropism is defined as the growth of organisms navigated by chemical stimulus from outside of the organism. It has been observed in bacteria, plants and fungi. A chemical gradient can influence the growth of the organism in a positive or negative way. Positive growth is characterized by growing towards a stimulus and negative growth is growing away from the stimulus.

Neural adaptation or sensory adaptation is a gradual decrease over time in the responsiveness of the sensory system to a constant stimulus. It is usually experienced as a change in the stimulus. For example, if a hand is rested on a table, the table's surface is immediately felt against the skin. Subsequently, however, the sensation of the table surface against the skin gradually diminishes until it is virtually unnoticeable. The sensory neurons that initially respond are no longer stimulated to respond; this is an example of neural adaptation.

<span class="mw-page-title-main">Nastic movements</span> Undirected movement in response to external stimuli

In biology, nastic movements are non-directional responses to stimuli, and are usually associated with plants. The movement can be due to changes in turgor. Decrease in turgor pressure causes shrinkage, while increase in turgor pressure brings about swelling. Nastic movements differ from tropic movements in that the direction of tropic responses depends on the direction of the stimulus, whereas the direction of nastic movements is independent of the stimulus's position. The tropic movement is growth movement but nastic movement may or may not be growth movement. The rate or frequency of these responses increases as intensity of the stimulus increases. An example of such a response is the opening and closing of flowers, movement of euglena, chlamydomonas towards the source of light. They are named with the suffix "-nasty" and have prefixes that depend on the stimuli:

Chordotonal organs are stretch receptor organs found only in insects and crustaceans. They are located at most joints and are made up of clusters of scolopidia that either directly or indirectly connect two joints and sense their movements relative to one another. They can have both extero- and proprioceptive functions, for example sensing auditory stimuli or leg movement. The word was coined by Vitus Graber in 1882, though he interpreted them as being stretched between two points like a string, sensing vibrations through resonance.

<span class="mw-page-title-main">Plant perception (physiology)</span> Plants interaction to environment

Plant perception is the ability of plants to sense and respond to the environment by adjusting their morphology and physiology. Botanical research has revealed that plants are capable of reacting to a broad range of stimuli, including chemicals, gravity, light, moisture, infections, temperature, oxygen and carbon dioxide concentrations, parasite infestation, disease, physical disruption, sound, and touch. The scientific study of plant perception is informed by numerous disciplines, such as plant physiology, ecology, and molecular biology.

The Mauthner cells are a pair of big and easily identifiable neurons located in the rhombomere 4 of the hindbrain in fish and amphibians that are responsible for a very fast escape reflex. The cells are also notable for their unusual use of both chemical and electrical synapses.

<span class="mw-page-title-main">Phototaxis</span>

Phototaxis is a kind of taxis, or locomotory movement, that occurs when a whole organism moves towards or away from a stimulus of light. This is advantageous for phototrophic organisms as they can orient themselves most efficiently to receive light for photosynthesis. Phototaxis is called positive if the movement is in the direction of increasing light intensity and negative if the direction is opposite.

<span class="mw-page-title-main">Pain in invertebrates</span> Contentious issue

Pain in invertebrates is a contentious issue. Although there are numerous definitions of pain, almost all involve two key components. First, nociception is required. This is the ability to detect noxious stimuli which evokes a reflex response that moves the entire animal, or the affected part of its body, away from the source of the stimulus. The concept of nociception does not necessarily imply any adverse, subjective feeling; it is a reflex action. The second component is the experience of "pain" itself, or suffering—i.e., the internal, emotional interpretation of the nociceptive experience. Pain is therefore a private, emotional experience. Pain cannot be directly measured in other animals, including other humans; responses to putatively painful stimuli can be measured, but not the experience itself. To address this problem when assessing the capacity of other species to experience pain, argument-by-analogy is used. This is based on the principle that if a non-human animal's responses to stimuli are similar to those of humans, it is likely to have had an analogous experience. It has been argued that if a pin is stuck in a chimpanzee's finger and they rapidly withdraw their hand, then argument-by-analogy implies that like humans, they felt pain. It has been questioned why the inference does not then follow that a cockroach experiences pain when it writhes after being stuck with a pin. This argument-by-analogy approach to the concept of pain in invertebrates has been followed by others.

Phobotaxis is a random behavioral response to all forms of aversive stimuli. A positive phobic response is one in which either activity is increased or the organism moves toward the stimulus, while a negative phobic response is when activity is decreased or the organism moves away from the stimulus. On the bacterial level, phobotaxis is regularly seen in accordance with phototaxis, random movement in response to light. In the protobacteria Rhodospirillum rubrum, the presence of ferric ion does not create a favorable wavelength of light for physiological activity. This elicits a positive photophobotactic response where the protobacteria moves towards blue and near-UV light. While the phobic response is classified as a photophobotactic response, the photochemical product of ferric complex in medium acts as a chemical stimulus, making this an example of chemotaxis as well. In the eukaryote Euglena, positive phototaxis and positive phobotaxis exhibit nearly the same action spectra, providing more evidence for their association. There also exists evidence to support photophobotaxis being coupled with electron transport needed in photosynthesis for two specific algaes: Phormidium uncinatum and Ph. autumnale. While there does not exist much evidence of phobotaxis in response to tactile stimuli, there is evidence to suggest species will respond in ways that will maximize necessary resources such as food. An experiment that simulated trail movements of trace fossils in the Ediacaran-Cambrian transition showed that those who engaged in phobotaxis, as in avoiding trails which indicate already exploited areas, gained more resources and had higher search efficiency. This foraging for resources involves changes in patchiness, which combines gravitaxis, movement in response to changes in gravity, and chemoreception to identify the spatial pattern of odors and move in response to chemical gradients.

Plant nucleus movement is the movement of the cell nucleus in plants by the cytoskeleton.

Photokinesis is a change in the velocity of movement of an organism as a result of changes in light intensity. The alteration in speed is independent of the direction from which the light is shining. Photokinesis is described as positive if the velocity of travel is greater with an increase in light intensity and negative if the velocity is slower. If a group of organisms with a positive photokinetic response is swimming in a partially shaded environment, there will be fewer organisms per unit of volume in the sunlit portion than in the shaded parts. This may be beneficial for the organisms if it is unfavourable to their predators, or it may be propitious to them in their quest for prey.

<span class="mw-page-title-main">Run-and-tumble motion</span> Type of bacterial motion

Run-and-tumble motion is a movement pattern exhibited by certain bacteria and other microscopic agents. It consists of an alternating sequence of "runs" and "tumbles": during a run, the agent propels itself in a fixed direction, and during a tumble, it remains stationary while it reorients itself in preparation for the next run.

References

  1. 1 2 Adams, C. F.; Paul, A. J. (February 1999). "Phototaxis and Geotaxis of Light-Adapted Zoeae of the Golden King Crab Lithodes aequispinus (Anomura: Lithodidae) in the Laboratory". Journal of Crustacean Biology. 19 (1): 106. doi:10.2307/1549552. JSTOR   1549552.
  2. "Gravitaxis - Biology-Online Dictionary" . Retrieved 25 March 2018.
  3. ten Hagen, B.; Kümmel, F.; Wittkowski, R.; Takagi, D.; Löwen, H.; Bechinger, C. (2014). "Gravitaxis of asymmetric self-propelled colloidal particles". Nature Communications. 5 (1): 4829. arXiv: 1409.6882 . doi:10.1038/ncomms5829. PMID   25234416. S2CID   16768325.
  4. Häder, DP; Hemmersbach, R (2017). "Gravitaxis in Euglena". Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology. Vol. 979. pp. 237–266. doi:10.1007/978-3-319-54910-1_12. ISBN   978-3-319-54908-8. PMID   28429325.
  5. Armstrong, JD; Texada, MJ; Munjaal, R; Baker, DA; Beckingham, KM (April 2006). "Gravitaxis in Drosophila melanogaster: a forward genetic screen". Genes, Brain and Behavior. 5 (3): 222–39. doi: 10.1111/j.1601-183X.2005.00154.x . PMID   16594976.

Wiktionary-logo-en-v2.svg The dictionary definition of gravitaxis at Wiktionary