Part of a series on |
Multi-agent systems |
---|
Multi-agent simulation |
Agent-oriented programming |
Related |
Self-propelled particles (SPP), also referred to as self-driven particles, are terms used by physicists to describe autonomous agents, which convert energy from the environment into directed or persistent random walk. Natural systems which have inspired the study and design of these particles include walking, swimming or flying animals. Other biological systems include bacteria, cells, algae and other micro-organisms. Generally, self-propelled particles often refer to artificial systems such as robots or specifically designed particles such as swimming Janus colloids, [2] bimetallic nanorods, nanomotors and walking grains. In the case of directed propulsion, which is driven by a chemical gradient, this is referred to as chemotaxis, observed in biological systems, e.g. bacteria quorum sensing and ant pheromone detection, and in synthetic systems, e.g. enzyme molecule chemotaxis [3] and enzyme powered hard and soft particles.
Self-propelled particles interact with each other, which can lead to the emergence of collective behaviours. These collective behaviours mimic the self-organization observed with the flocking of birds, the swarming of bugs, the formation of sheep herds, etc.
To understand the ubiquity of such phenomena, physicists have developed a number of self-propelled particles models. These models predict that self-propelled particles share certain properties at the group level, regardless of the type of animals (or artificial particles) in the swarm. [1] It has become a challenge in theoretical physics to find minimal statistical models that capture these behaviours. [4] [5] [6]
Most animals can be seen as SPP: they find energy in their food and exhibit various locomotion strategies, from flying to crawling. The most prominent examples of collective behaviours in these systems are fish schools, birds flocks, sheep herds, human crowds. At a smaller scale, cells and bacteria can also be treated as SPP. These biological systems can propel themselves based on the presence of chemoattractants. At even smaller scale, molecular motors transform ATP energy into directional motion. Recent work has shown that enzyme molecules will also propel themselves. [7] Further, it has been shown that they will preferentially move towards a region of higher substrate concentration, [8] [9] a phenomenon that has been developed into a purification technique to isolate live enzymes. [10] Additionally, microparticles, vesicles, and even macroscale sheets can become self-propelled when they are functionalized with enzymes. [11] The catalytic reactions of the enzymes direct the particles or vesicles based on corresponding substrate gradients. [12] [13] [14]
There is a distinction between wet and dry systems. In the first case the particles "swim" in a surrounding fluid; in the second case the particles "walk" on a substrate.
Active colloidal particles, dubbed nanomotors, are the prototypical example of wet SPP. Janus particles are colloidal particles with two different sides, having different physical or chemical properties. [15] This symmetry breaking allows, by properly tuning the environment (typically the surrounding solution), for the motion of the Janus particle. For instance, the two sides of the Janus particle can induce a local gradient of, temperature, electric field, or concentration of chemical species. [16] [17] This induces motion of the Janus particle along the gradient through, respectively, thermophoresis, electrophoresis or diffusiophoresis. [17] Because the Janus particles consume energy from their environment (catalysis of chemical reactions, light absorption, etc.), the resulting motion constitutes an irreversible process and the particles are out of equilibrium.
Walking grains are a typical realization of dry SPP: The grains are milli-metric disks sitting on a vertically vibrating plate, which serves as the source of energy and momentum. The disks have two different contacts ("feet") with the plate, a hard needle-like foot in the front and a large soft rubber foot in the back. When shaken, the disks move in a preferential direction defined by the polar (head-tail) symmetry of the contacts. This together with the vibrational noise result in a persistent random walk. [27]
Symmetry breaking is a necessary condition for SPPs, as there must be a preferential direction for moving. However, the symmetry breaking may not come solely from the structure itself but from its interaction with electromagnetic fields, in particular when taken into account retardation effects. This can be used for the phototactic motion of even highly symmetrical nanoparticles. [28] [29] In 2021, it was experimentally shown that completely symmetric particles (spherical microswimmers in this case) experience a net thermophoretic force when illuminated from a given direction. [30] For self-propelled enzyme molecules, symmetry breaking can also arise from diffusion and kinetic asymmetry. [31] [32]
In 2020, researchers from the University of Leicester reported a hitherto unrecognised state of self-propelled particles — which they called a "swirlonic state". The swirlonic state consists of "swirlons", formed by groups of self-propelled particles orbiting a common centre of mass. These quasi-particles demonstrate a surprising behaviour: In response to an external load they move with a constant velocity proportional to the applied force, just as objects in viscous media. Swirlons attract each other and coalesce forming a larger, joint swirlon. The coalescence is an extremely slow, decelerating process, resulting in a rarified state of immobile quasi-particles. In addition to the swirlonic state, gaseous, liquid and solid states were observed, depending on the inter-particle and self-driving forces. In contrast to molecular systems, liquid and gaseous states of self-propelled particles do not coexist. [33] [34]
Typical collective motion generally includes the formation of self-assembled structures, such as clusters and organized assemblies. [35]
The prominent and most spectacular emergent large scale behaviour observed in assemblies of SPP is directed collective motion. In that case all particles move in the same direction. On top of that, spatial structures can emerge such as bands, vortices, asters, moving clusters.
Another class of large scale behaviour, which does not imply directed motion is either the spontaneous formation of clusters or the separation in a gas-like and a liquid-like phase, an unexpected phenomenon when the SPP have purely repulsive interaction. This phase separation has been called Motility Induced Phase Separation (MIPS).
The modeling of SPP was introduced in 1995 by Tamás Vicsek et al. [36] as a special case of the Boids model introduced in 1986 by Reynolds. [37] In that case the SPP are point particles, which move with a constant speed. and adopt (at each time increment) the average direction of motion of the other particles in their local neighborhood up to some added noise. [38] [39]
External videos | |
---|---|
SPP model interactive simulation [40] – needs Java |
Simulations demonstrate that a suitable "nearest neighbour rule" eventually results in all the particles swarming together or moving in the same direction. This emerges, even though there is no centralised coordination, and even though the neighbours for each particle constantly change over time (see the interactive simulation in the box on the right). [36]
Since then a number of models have been proposed, ranging from the simple active Brownian particle to detailed and specialized models aiming at describing specific systems and situations. Among the important ingredients in these models, one can list
One can also include effective influences of the surrounding; for instance the nominal velocity of the SPP can be set to depend on the local density, in order to take into account crowding effects.
Self-propelled particles can also be modeled using on-lattice models, which offer the advantage of being simple and efficient to simulate, and in some cases, may be easier to analyze mathematically. [41] On-lattice models such as BIO-LGCA models have been used to study physical aspects of self-propelled particle systems (such as phase transitions and pattern-forming potential [42] ) as well as specific questions related to real active matter systems (for example, identifying the underlying biological processes involved in tumor invasion [43] ).
Young desert locusts are solitary and wingless nymphs. If food is short they can gather together and start occupying neighbouring areas, recruiting more locusts. Eventually they can become a marching army extending over many kilometres. [44] This can be the prelude to the development of the vast flying adult locust swarms which devastate vegetation on a continental scale. [45]
One of the key predictions of the SPP model is that as the population density of a group increases, an abrupt transition occurs from individuals moving in relatively disordered and independent ways within the group to the group moving as a highly aligned whole. [46] Thus, in the case of young desert locusts, a trigger point should occur which turns disorganised and dispersed locusts into a coordinated marching army. When the critical population density is reached, the insects should start marching together in a stable way and in the same direction.
In 2006, a group of researchers examined how this model held up in the laboratory. Locusts were placed in a circular arena, and their movements were tracked with computer software. At low densities, below 18 locusts per square metre, the locusts mill about in a disordered way. At intermediate densities, they start falling into line and marching together, punctuated by abrupt but coordinated changes in direction. However, when densities reached a critical value at about 74 locusts/m2, the locusts ceased making rapid and spontaneous changes in direction, and instead marched steadily in the same direction for the full eight hours of the experiment.
External videos | |
---|---|
Marching locusts – sped up 6-fold When the density of locusts reaches a critical point, they march steadily together without direction reversals. |
This confirmed the behaviour predicted by the SPP models. [1]
In the field, according to the Food and Agriculture Organization of the United Nations, the average density of marching bands is 50 locusts/m2 (50 million locusts/km2), with a typical range from 20 to 120 locusts/m2. [45] : 29 The research findings discussed above demonstrate the dynamic instability that is present at the lower locust densities typical in the field, where marching groups randomly switch direction without any external perturbation. Understanding this phenomenon, together with the switch to fully coordinated marching at higher densities, is essential if the swarming of desert locusts is to be controlled. [1]
Swarming animals, such as ants, bees, fish and birds, are often observed suddenly switching from one state to another. For example, birds abruptly switch from a flying state to a landing state. Or fish switch from schooling in one direction to schooling in another direction. Such state switches can occur with astonishing speed and synchronicity, as though all the members in the group made a unanimous decision at the same moment. Phenomena like these have long puzzled researchers. [48]
In 2010, Bhattacharya and Vicsek used an SPP model to analyse what is happening here. As a paradigm, they considered how flying birds arrive at a collective decision to make a sudden and synchronised change to land. The birds, such as the starlings in the image on the right, have no decision-making leader, yet the flock know exactly how to land in a unified way. The need for the group to land overrides deviating intentions by individual birds. The particle model found that the collective shift to landing depends on perturbations that apply to the individual birds, such as where the birds are in the flock. [47] It is behaviour that can be compared with the way that sand avalanches, if it is piled up, before the point at which symmetric and carefully placed grains would avalanche, because the fluctuations become increasingly non-linear. [49]
"Our main motivation was to better understand something which is puzzling and out there in nature, especially in cases involving the stopping or starting of a collective behavioural pattern in a group of people or animals ... We propose a simple model for a system whose members have the tendency to follow the others both in space and in their state of mind concerning a decision about stopping an activity. This is a very general model, which can be applied to similar situations." [47] The model could also be applied to a swarm of unmanned drones, to initiate the desired motion in a crowd of people, or to interpreting group patterns when stock market shares are bought or sold. [50]
SPP models have been applied in many other areas, such as schooling fish, [51] robotic swarms, [52] molecular motors, [53] the development of human stampedes [54] and the evolution of human trails in urban green spaces. [55] SPP in Stokes flow, such as Janus particles, are often modeled by the squirmer model. [56]
Swarm behaviour, or swarming, is a collective behaviour exhibited by entities, particularly animals, of similar size which aggregate together, perhaps milling about the same spot or perhaps moving en masse or migrating in some direction. It is a highly interdisciplinary topic.
A nanomotor is a molecular or nanoscale device capable of converting energy into movement. It can typically generate forces on the order of piconewtons.
In physics, the Tsallis entropy is a generalization of the standard Boltzmann–Gibbs entropy. It is proportional to the expectation of the q-logarithm of a distribution.
In condensed matter physics, a string-net is an extended object whose collective behavior has been proposed as a physical mechanism for topological order by Michael A. Levin and Xiao-Gang Wen. A particular string-net model may involve only closed loops; or networks of oriented, labeled strings obeying branching rules given by some gauge group; or still more general networks.
The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them. The percolation threshold is the critical value of the occupation probability p, or more generally a critical surface for a group of parameters p1, p2, ..., such that infinite connectivity (percolation) first occurs.
The Landau–Zener formula is an analytic solution to the equations of motion governing the transition dynamics of a two-state quantum system, with a time-dependent Hamiltonian varying such that the energy separation of the two states is a linear function of time. The formula, giving the probability of a diabatic transition between the two energy states, was published separately by Lev Landau, Clarence Zener, Ernst Stueckelberg, and Ettore Majorana, in 1932.
Dirk Helbing is Professor of Computational Social Science at the Department of Humanities, Social and Political Sciences and affiliate of the Computer Science Department at ETH Zurich.
Active matter is matter composed of large numbers of active "agents", each of which consumes energy in order to move or to exert mechanical forces. Such systems are intrinsically out of thermal equilibrium. Unlike thermal systems relaxing towards equilibrium and systems with boundary conditions imposing steady currents, active matter systems break time reversal symmetry because energy is being continually dissipated by the individual constituents. Most examples of active matter are biological in origin and span all the scales of the living, from bacteria and self-organising bio-polymers such as microtubules and actin, to schools of fish and flocks of birds. However, a great deal of current experimental work is devoted to synthetic systems such as artificial self-propelled particles. Active matter is a relatively new material classification in soft matter: the most extensively studied model, the Vicsek model, dates from 1995.
Maya Paczuski is the head and founder of the Complexity Science Group at the University of Calgary. She is a well-cited physicist whose work spans self-organized criticality, avalanche dynamics, earthquake, and complex networks. She was born in Israel in 1963, but grew up in the United States. Maya Paczuski received a B.S. and M.S. in Electrical Engineering and Computer Science from M.I.T. in 1986 and then went on to study with Mehran Kardar, earning her Ph.D in Condensed matter physics from the same institute.
The Vicsek model is a mathematical model used to describe active matter. One motivation of the study of active matter by physicists is the rich phenomenology associated to this field. Collective motion and swarming are among the most studied phenomena. Within the huge number of models that have been developed to catch such behavior from a microscopic description, the most famous is the model introduced by Tamás Vicsek et al. in 1995.
Sharon C. Glotzer is an American scientist and "digital alchemist", the Anthony C. Lembke Department Chair of Chemical Engineering, the John Werner Cahn Distinguished University Professor of Engineering and the Stuart W. Churchill Collegiate Professor of Chemical Engineering at the University of Michigan, where she is also professor of materials science and engineering, professor of physics, professor of macromolecular science and engineering, and professor of applied physics. She is recognized for her contributions to the fields of soft matter and computational science, most notably on problems in assembly science and engineering, nanoscience, and the glass transition, for which the elucidation of the nature of dynamical heterogeneity in glassy liquids is of particular significance. She is a member of the National Academy of Sciences, the National Academy of Engineering, and the American Academy of Arts and Sciences.
Scissors Modes are collective excitations in which two particle systems move with respect to each other conserving their shape. For the first time they were predicted to occur in deformed atomic nuclei by N. LoIudice and F. Palumbo, who used a semiclassical Two Rotor Model, whose solution required a realization of the O(4) algebra that was not known in mathematics. In this model protons and neutrons were assumed to form two interacting rotors to be identified with the blades of scissors. Their relative motion (Fig.1) generates a magnetic dipole moment whose coupling with the electromagnetic field provides the signature of the mode.
Symmetry breaking of escaping ants is a herd behavior phenomenon observed when ants are constrained to a cell with two equidistant exits and then sprayed with an insect repellent. The ants tend to crowd one door more while trying to escape, thereby decreasing evacuation efficiency.
Micromotors are very small particles that can move themselves. The term is often used interchangeably with "nanomotor," despite the implicit size difference. These micromotors actually propel themselves in a specific direction autonomously when placed in a chemical solution. There are many different micromotor types operating under a host of mechanisms. Easily the most important examples are biological motors such as bacteria and any other self-propelled cells. Synthetically, researchers have exploited oxidation-reduction reactions to produce chemical gradients, local fluid flows, or streams of bubbles that then propel these micromotors through chemical media. Different stimuli, both external and internal can be used to control the behavior of these micromotors.
Many experimental realizations of self-propelled particles exhibit a strong tendency to aggregate and form clusters, whose dynamics are much richer than those of passive colloids. These aggregates of particles form for a variety of reasons, from chemical gradients to magnetic and ultrasonic fields. Self-propelled enzyme motors and synthetic nanomotors also exhibit clustering effects in the form of chemotaxis. Chemotaxis is a form of collective motion of biological or non-biological particles toward a fuel source or away from a threat, as observed experimentally in enzyme diffusion and also synthetic chemotaxis or phototaxis. In addition to irreversible schooling, self-propelled particles also display reversible collective motion, such as predator–prey behavior and oscillatory clustering and dispersion.
Collective motion is defined as the spontaneous emergence of ordered movement in a system consisting of many self-propelled agents. It can be observed in everyday life, for example in flocks of birds, schools of fish, herds of animals and also in crowds and car traffic. It also appears at the microscopic level: in colonies of bacteria, motility assays and artificial self-propelled particles. The scientific community is trying to understand the universality of this phenomenon. In particular it is intensively investigated in statistical physics and in the field of active matter. Experiments on animals, biological and synthesized self-propelled particles, simulations and theories are conducted in parallel to study these phenomena. One of the most famous models that describes such behavior is the Vicsek model introduced by Tamás Vicsek et al. in 1995.
Sriram Rajagopal Ramaswamy is an Indian physicist. He is a professor at the Indian Institute of Science, Bangalore, and previously the director of the Tata Institute of Fundamental Research (TIFR) Centre for Interdisciplinary Sciences in Hyderabad.
Random sequential adsorption (RSA) refers to a process where particles are randomly introduced in a system, and if they do not overlap any previously adsorbed particle, they adsorb and remain fixed for the rest of the process. RSA can be carried out in computer simulation, in a mathematical analysis, or in experiments. It was first studied by one-dimensional models: the attachment of pendant groups in a polymer chain by Paul Flory, and the car-parking problem by Alfréd Rényi. Other early works include those of Benjamin Widom. In two and higher dimensions many systems have been studied by computer simulation, including in 2d, disks, randomly oriented squares and rectangles, aligned squares and rectangles, various other shapes, etc.
An active fluid is a densely packed soft material whose constituent elements can self-propel. Examples include dense suspensions of bacteria, microtubule networks or artificial swimmers. These materials come under the broad category of active matter and differ significantly in properties when compared to passive fluids, which can be described using Navier-Stokes equation. Even though systems describable as active fluids have been observed and investigated in different contexts for a long time, scientific interest in properties directly related to the activity has emerged only in the past two decades. These materials have been shown to exhibit a variety of different phases ranging from well ordered patterns to chaotic states. Recent experimental investigations have suggested that the various dynamical phases exhibited by active fluids may have important technological applications.
A microswimmer is a microscopic object with the ability to move in a fluid environment. Natural microswimmers are found everywhere in the natural world as biological microorganisms, such as bacteria, archaea, protists, sperm and microanimals. Since the turn of the millennium there has been increasing interest in manufacturing synthetic and biohybrid microswimmers. Although only two decades have passed since their emergence, they have already shown promise for various biomedical and environmental applications.