Agent-based social simulation

Last updated

Agent-based social simulation (or ABSS) [1] [2] consists of social simulations that are based on agent-based modeling, and implemented using artificial agent technologies. Agent-based social simulation is a scientific discipline concerned with simulation of social phenomena, using computer-based multiagent models. In these simulations, persons or group of persons are represented by agents. MABSS is a combination of social science, multiagent simulation and computer simulation.

Contents

ABSS models the different elements of the social systems using artificial agents, (varying on scale) and placing them in a computer simulated society to observe the behaviors of the agents. From this data it is possible to learn about the reactions of the artificial agents and translate them into the results of non-artificial agents and simulations. Three main fields in ABSS are agent-based computing, social science, and computer simulation.

Agent-based computing is the design of the model and agents, while the computer simulation is the part of the simulation of the agents in the model and the outcomes. The social science is a mixture of sciences and social part of the model. It is where social phenomena are developed and theorized. The main purpose of ABSS is to provide models and tools for agent-based simulation of social phenomena. With ABSS, one can explore different outcomes of phenomena where it may not be possible to view the outcome in real life. It can provide us valuable information on society and the outcomes of social events or phenomena.

Multi-agent system

A multi-agent system is a system created from multiple autonomous elements interacting with each other. These are called agents. In a multi-agent system, each agent is represented by an individual algorithm. See Agent-based model.

Agents can be used to simulate many different active elements, including organisms, machines, persons, corporations and other organizations, nations, and so on. Agent-based models can be used to simulate a wide variety of social phenomena, including transportation, market failures, cooperation and escalation and spreading of conflicts. In agent-based models illustrate how models based on simple rules can results in complex dynamics and emergent behavior (Kontopoulos, 1993; Archer, 1995; Sawyer, 2001).

History

Sugarscape

The first widely known multi-agent generative social model was developed in 1996 by Joshua M. Epstein and Robert Axtell. [3] The purpose of this model was simulation and research of social phenomena like seasonal migration, environmental pollution, procreation, combat, disease spreading and cultural features. Their model is based on the work of economist Thomas Schelling, presented in paper "Models of Segregation" Thomas Schelling. This model represented the first generation of computer-based social simulations. Epstein and Axtell’s model was implemented using concepts from the "Game of Life" developed by John Horton Conway.

Usage for social sciences

There are three main objects of scientific implementation of ABSS (Gilbert, Trotzsch; 2005)

Understanding basic aspects of social phenomena

Like aspects involving its diffusion, dynamics or results. Such a basic models should be based on simple rules, so way in which resulting behavior emerges from system could be easily observable.

Prediction

These models are implemented to predict real life events and phenomena. Examples of use could be transportation (prediction of traffic in future to find places where traffic jams could occur), prediction of future unemployment rates etc. Problem of models made to accurately predict such an events is increasing complexity of model with number of dynamically changing parameters.

Research, testing and formulation of hypothesis

Unlike other two main objects, which have use outside Social sciences, latter one is used mainly on the field of social science. Agent-based social simulations are often used during research of new hypothesis. Simulation could be useful when there is no other way to observe agents during their actions. For example, during creation of new language, which is long-term process. Another benefit of simulation lies in fact, that to be able to prove theory in simulation, it has to be represented in formal and logical form. This leads to more coherent formulation of theory.

Multi-agent simulation suites (MASS) usage for problem solving

Society and culture

Models of information diffusion in social environment

An academic article investigates an agent-based simulation of information diffusion in Facebook online social network. [4]

Organizing networks

Emergence of social phenomena

Altruism and cooperation Ethnocentrism

Crowd behaviour

Models for natural disasters (evacuation – fire)

Economical science

Business

Market behavior models

Religion

Software used for implementing ABSS

SeSAm running an agent-based model SeSAm-v2.5.1.png
SeSAm running an agent-based model

Different agent based software have been used for implementing ABSS ( Tobias & Hofmann 2004 ) such as

See also

Related Research Articles

<span class="mw-page-title-main">Distributed artificial intelligence</span>

Distributed Artificial Intelligence (DAI) also called Decentralized Artificial Intelligence is a subfield of artificial intelligence research dedicated to the development of distributed solutions for problems. DAI is closely related to and a predecessor of the field of multi-agent systems.

<span class="mw-page-title-main">Computer simulation</span> Process of mathematical modelling, performed on a computer

Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics, astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions.

Social simulation is a research field that applies computational methods to study issues in the social sciences. The issues explored include problems in computational law, psychology, organizational behavior, sociology, political science, economics, anthropology, geography, engineering, archaeology and linguistics.

<span class="mw-page-title-main">NetLogo</span>

NetLogo is a programming language and integrated development environment (IDE) for agent-based modeling.

<span class="mw-page-title-main">Crowd simulation</span> Model of movement

Crowd simulation is the process of simulating the movement of a large number of entities or characters. It is commonly used to create virtual scenes for visual media like films and video games, and is also used in crisis training, architecture and urban planning, and evacuation simulation.

<span class="mw-page-title-main">Multi-agent system</span> Built of multiple interacting agents

A multi-agent system is a computerized system composed of multiple interacting intelligent agents. Multi-agent systems can solve problems that are difficult or impossible for an individual agent or a monolithic system to solve. Intelligence may include methodic, functional, procedural approaches, algorithmic search or reinforcement learning.

<span class="mw-page-title-main">Social complexity</span> Conceptual framework

In sociology, social complexity is a conceptual framework used in the analysis of society. In the sciences, contemporary definitions of complexity are found in systems theory, wherein the phenomenon being studied has many parts and many possible arrangements of the parts; simultaneously, what is complex and what is simple are relative and change in time.

<span class="mw-page-title-main">Computational sociology</span> Branch of the discipline of sociology

Computational sociology is a branch of sociology that uses computationally intensive methods to analyze and model social phenomena. Using computer simulations, artificial intelligence, complex statistical methods, and analytic approaches like social network analysis, computational sociology develops and tests theories of complex social processes through bottom-up modeling of social interactions.

An agent-based model (ABM) is a computational model for simulating the actions and interactions of autonomous agents in order to understand the behavior of a system and what governs its outcomes. It combines elements of game theory, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming. Monte Carlo methods are used to understand the stochasticity of these models. Particularly within ecology, ABMs are also called individual-based models (IBMs). A review of recent literature on individual-based models, agent-based models, and multiagent systems shows that ABMs are used in many scientific domains including biology, ecology and social science. Agent-based modeling is related to, but distinct from, the concept of multi-agent systems or multi-agent simulation in that the goal of ABM is to search for explanatory insight into the collective behavior of agents obeying simple rules, typically in natural systems, rather than in designing agents or solving specific practical or engineering problems.

An artificial society is an agent-based computational model for computer simulation in social analysis. It is mostly connected to the themes of complex systems, emergence, the Monte Carlo method, computational sociology, multi-agent systems, and evolutionary programming. While the concept was simple, actually realizing this conceptual point took a while. Complex mathematical models have been, and are, common; deceivingly simple models only have their roots in the late forties, and took the advent of the microcomputer to really get up to speed.

<span class="mw-page-title-main">Generative science</span> Study of how complex behaviour can be generated by deterministic and finite rules and parameters

Generative science is an area of research that explores the natural world and its complex behaviours. It explores ways "to generate apparently unanticipated and infinite behaviour based on deterministic and finite rules and parameters reproducing or resembling the behavior of natural and social phenomena". By modelling such interactions, it can suggest that properties exist in the system that had not been noticed in the real world situation. An example field of study is how unintended consequences arise in social processes.

Joshua Morris Epstein is Professor of Epidemiology at the New York University College of Global Public Health. Formerly Professor of Emergency Medicine at Johns Hopkins University, with joint appointments in the departments of Applied Mathematics, Economics, Biostatistics, International Health, and Environmental Health Sciences and the Director of the JHU Center for Advanced Modeling in the Social, Behavioral, and Health Sciences. He is an External Professor at the Santa Fe Institute, a member of the New York Academy of Sciences, and a member of the Institute of Medicine's Committee on Identifying and Prioritizing New Preventive Vaccines.

<span class="mw-page-title-main">AnyLogic</span> Multimethod simulation modeling tool

AnyLogic is a multimethod simulation modeling tool developed by The AnyLogic Company. It supports agent-based, discrete event, and system dynamics simulation methodologies. AnyLogic is cross-platform simulation software that works on Windows, macOS and Linux. AnyLogic is used to simulate: markets and competition, healthcare, manufacturing, supply chains and logistics, retail, business processes, social and ecosystem dynamics, defense, project and asset management, pedestrian dynamics and road traffic, IT, and aerospace. It is considered to be among the major players in the simulation industry, especially within the domain of business processes is acknowledged to be a powerful tool.

Sugarscape is a model for artificially intelligent agent-based social simulation following some or all rules presented by Joshua M. Epstein & Robert Axtell in their book Growing Artificial Societies.

Robert Axtell is a professor at George Mason University, Krasnow Institute for Advanced Study, where he is departmental chair of the Department of Computational Social Science. He is also a member of the External Faculty of the Santa Fe Institute. Axtell is also the co-Director of the new Computational Public Policy Lab at Mason.

<span class="mw-page-title-main">Artificial life</span> Field of study

Artificial life is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. In 1987 Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.

<span class="mw-page-title-main">Juan Pavón</span> Spanish computer scientist (b.1962)

Juan Pavón is a Spanish computer scientist, full professor of the Complutense University of Madrid (UCM). He is a pioneer researcher in the field of Software Agents, co-creator of the FIPA MESSAGE and INGENIAS methodologies, and founder and director of the research group GRASIA: GRoup of Agent-based, Social and Interdisciplinary Applications at UCM. He is known for his work in the field of Artificial Intelligence, specifically in agent-oriented software engineering. He has been often cited by mainstream media, as a reference in Artificial Intelligence.

Artificial Economics can be defined as ″a research field that aims at improving our understanding of socioeconomic processes with the help of computer simulation″. Like in Theoretical Economics, the approach followed in Artificial Economics to gain understanding of socioeconomic processes involves building and analysing formal models. However, in contrast with Theoretical Economics, models in Artificial Economics are implemented in a programming language so that computers can be employed to analyse them.

Crowd analysis is the practice of interpreting data on the natural movement of groups or objects. Masses of bodies, particularly humans, are the subjects of these crowd tracking analyses that include how a particular crowd moves and when a movement pattern changes. Researchers use the data to predict future crowd movement, crowd density, and plan responses to potential events such as those that require evacuation routes. Applications of crowd analysis can range from video game crowd simulation to security and surveillance.

References

  1. Li, Xiaochen; Mao, Wenji; Zeng, Daniel; Wang, Fei-Yue (2008). "Agent-Based Social Simulation and Modeling in Social Computing". Intelligence and Security Informatics. Lecture Notes in Computer Science. Vol. 5075/2008. pp. 401–412. doi:10.1007/978-3-540-69304-8_41. ISBN   978-3-540-69136-5.
  2. Davidsson, Paul (2002). "Agent Based Social Simulation: A Computer Science View". Journal of Artificial Societies and Social Simulation. 5 (1).
  3. EPSTEIN J M & Axtell R L (1996)
  4. Nasrinpour, Hamid Reza; Friesen, Marcia R.; McLeod, Bob (2016-11-22). "An Agent-Based Model of Message Propagation in the Facebook Electronic Social Network". arXiv: 1611.07454 [cs.SI].
  5. Ascape
  6. INGENIAS Development Kit Archived July 5, 2009, at the Wayback Machine (IDK)

Further studies