Multi-agent planning

Last updated

In computer science multi-agent planning involves coordinating the resources and activities of multiple agents .

Contents

NASA says, "multiagent planning is concerned with planning by (and for) multiple agents. It can involve agents planning for a common goal, an agent coordinating the plans (plan merging) or planning of others, or agents refining their own plans while negotiating over tasks or resources. The topic also involves how agents can do this in real time while executing plans (distributed continual planning). Multiagent scheduling differs from multiagent planning the same way planning and scheduling differ: in scheduling often the tasks that need to be performed are already decided, and in practice, scheduling tends to focus on algorithms for specific problem domains". [1]

See also

Related Research Articles

A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another. Distributed computing is a field of computer science that studies distributed systems.

<span class="mw-page-title-main">Evolutionary algorithm</span> Subset of evolutionary computation

In computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions. Evolution of the population then takes place after the repeated application of the above operators.

<span class="mw-page-title-main">Distributed artificial intelligence</span>

Distributed Artificial Intelligence (DAI) also called Decentralized Artificial Intelligence is a subfield of artificial intelligence research dedicated to the development of distributed solutions for problems. DAI is closely related to and a predecessor of the field of multi-agent systems.

In computing cooperative distributed problem solving is a network of semi-autonomous processing nodes working together to solve a problem, typically in a multi-agent system. That is concerned with the investigation of problem subdivision, sub-problem distribution, results synthesis, optimisation of problem solver coherence and co-ordination. It is closely related to distributed constraint programming and distributed constraint optimization; see the links below.

<span class="mw-page-title-main">Ant colony optimization algorithms</span> Optimization algorithm

In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. Artificial ants stand for multi-agent methods inspired by the behavior of real ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations of artificial ants and local search algorithms have become a method of choice for numerous optimization tasks involving some sort of graph, e.g., vehicle routing and internet routing.

Collaborative intelligence characterizes multi-agent, distributed systems where each agent, human or machine, is autonomously contributing to a problem solving network. Collaborative autonomy of organisms in their ecosystems makes evolution possible. Natural ecosystems, where each organism's unique signature is derived from its genetics, circumstances, behavior and position in its ecosystem, offer principles for design of next generation social networks to support collaborative intelligence, crowdsourcing individual expertise, preferences, and unique contributions in a problem solving process.

Reason maintenance is a knowledge representation approach to efficient handling of inferred information that is explicitly stored. Reason maintenance distinguishes between base facts, which can be defeated, and derived facts. As such it differs from belief revision which, in its basic form, assumes that all facts are equally important. Reason maintenance was originally developed as a technique for implementing problem solvers. It encompasses a variety of techniques that share a common architecture: two components—a reasoner and a reason maintenance system—communicate with each other via an interface. The reasoner uses the reason maintenance system to record its inferences and justifications of the inferences. The reasoner also informs the reason maintenance system which are the currently valid base facts (assumptions). The reason maintenance system uses the information to compute the truth value of the stored derived facts and to restore consistency if an inconsistency is derived.

<span class="mw-page-title-main">Multi-agent system</span> Built of multiple interacting agents

A multi-agent system is a computerized system composed of multiple interacting intelligent agents. Multi-agent systems can solve problems that are difficult or impossible for an individual agent or a monolithic system to solve. Intelligence may include methodic, functional, procedural approaches, algorithmic search or reinforcement learning.

A blackboard system is an artificial intelligence approach based on the blackboard architectural model, where a common knowledge base, the "blackboard", is iteratively updated by a diverse group of specialist knowledge sources, starting with a problem specification and ending with a solution. Each knowledge source updates the blackboard with a partial solution when its internal constraints match the blackboard state. In this way, the specialists work together to solve the problem. The blackboard model was originally designed as a way to handle complex, ill-defined problems, where the solution is the sum of its parts.

<span class="mw-page-title-main">Automated planning and scheduling</span> Branch of artificial intelligence

Automated planning and scheduling, sometimes denoted as simply AI planning, is a branch of artificial intelligence that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles. Unlike classical control and classification problems, the solutions are complex and must be discovered and optimized in multidimensional space. Planning is also related to decision theory.

The belief–desire–intention software model (BDI) is a software model developed for programming intelligent agents. Superficially characterized by the implementation of an agent's beliefs, desires and intentions, it actually uses these concepts to solve a particular problem in agent programming. In essence, it provides a mechanism for separating the activity of selecting a plan from the execution of currently active plans. Consequently, BDI agents are able to balance the time spent on deliberating about plans and executing those plans. A third activity, creating the plans in the first place (planning), is not within the scope of the model, and is left to the system designer and programmer.

<span class="mw-page-title-main">Intelligent agent</span> Software agent which acts autonomously

In artificial intelligence, an intelligent agent (IA) is an agent acting in an intelligent manner; It perceives its environment, takes actions autonomously in order to achieve goals, and may improve its performance with learning or acquiring knowledge. An intelligent agent may be simple or complex: A thermostat or other control system is considered an example of an intelligent agent, as is a human being, as is any system that meets the definition, such as a firm, a state, or a biome.

Human-based computation (HBC), human-assisted computation, ubiquitous human computing or distributed thinking is a computer science technique in which a machine performs its function by outsourcing certain steps to humans, usually as microwork. This approach uses differences in abilities and alternative costs between humans and computer agents to achieve symbiotic human–computer interaction. For computationally difficult tasks such as image recognition, human-based computation plays a central role in training Deep Learning-based Artificial Intelligence systems. In this case, human-based computation has been referred to as human-aided artificial intelligence.

Distributed constraint optimization is the distributed analogue to constraint optimization. A DCOP is a problem in which a group of agents must distributedly choose values for a set of variables such that the cost of a set of constraints over the variables is minimized.

Physicomimetics is physics-based swarm (computational) intelligence. The word is derived from physike and mimesis.

Ekaterini Panagiotou Sycara is a Greek computer scientist. She is an Edward Fredkin Research Professor of Robotics in the Robotics Institute, School of Computer Science at Carnegie Mellon University internationally known for her research in artificial intelligence, particularly in the fields of negotiation, autonomous agents and multi-agent systems. She directs the Advanced Agent-Robotics Technology Lab at Robotics Institute, Carnegie Mellon University. She also serves as academic advisor for PhD students at both Robotics Institute and Tepper School of Business.

Lateral computing is a lateral thinking approach to solving computing problems. Lateral thinking has been made popular by Edward de Bono. This thinking technique is applied to generate creative ideas and solve problems. Similarly, by applying lateral-computing techniques to a problem, it can become much easier to arrive at a computationally inexpensive, easy to implement, efficient, innovative or unconventional solution.

Task Analysis, Environment Modeling, and Simulation is a problem domain independent modeling language used to describe the task structures and the problem-solving activities of intelligent agents in a multi-agent environment.

<span class="mw-page-title-main">Glossary of artificial intelligence</span> List of definitions of terms and concepts commonly used in the study of artificial intelligence

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

<span class="mw-page-title-main">Multi-agent pathfinding</span> Pathfinding problem

The problem of Multi-Agent Path Finding (MAPF) is an instance of multi-agent planning and consists in the computation of collision-free paths for a group of agents from their location to an assigned target. It is an optimization problem, since the aim is to find those paths that optimize a given objective function, usually defined as the number of time steps until all agents reach their goal cells. MAPF is the multi-agent generalization of the pathfinding problem, and it is closely related to the shortest path problem in the context of graph theory.

References

  1. "ICAPS 2005 Workshop on Multiagent Planning and Scheduling". ai.jpl.nasa.gov. Archived from the original on 25 October 2005. Retrieved 14 January 2022.

Further reading