Automated planning and scheduling

Last updated

Automated planning and scheduling, sometimes denoted as simply AI planning, [1] is a branch of artificial intelligence that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles. Unlike classical control and classification problems, the solutions are complex and must be discovered and optimized in multidimensional space. Planning is also related to decision theory.

Contents

In known environments with available models, planning can be done offline. Solutions can be found and evaluated prior to execution. In dynamically unknown environments, the strategy often needs to be revised online. Models and policies must be adapted. Solutions usually resort to iterative trial and error processes commonly seen in artificial intelligence. These include dynamic programming, reinforcement learning and combinatorial optimization. Languages used to describe planning and scheduling are often called action languages.

Overview

Given a description of the possible initial states of the world, a description of the desired goals, and a description of a set of possible actions, the planning problem is to synthesize a plan that is guaranteed (when applied to any of the initial states) to generate a state which contains the desired goals (such a state is called a goal state).

The difficulty of planning is dependent on the simplifying assumptions employed. Several classes of planning problems can be identified depending on the properties the problems have in several dimensions.

The simplest possible planning problem, known as the Classical Planning Problem, is determined by:

Since the initial state is known unambiguously, and all actions are deterministic, the state of the world after any sequence of actions can be accurately predicted, and the question of observability is irrelevant for classical planning.

Further, plans can be defined as sequences of actions, because it is always known in advance which actions will be needed.

With nondeterministic actions or other events outside the control of the agent, the possible executions form a tree, and plans have to determine the appropriate actions for every node of the tree.

Discrete-time Markov decision processes (MDP) are planning problems with:

When full observability is replaced by partial observability, planning corresponds to a partially observable Markov decision process (POMDP).

If there are more than one agent, we have multi-agent planning, which is closely related to game theory.

Domain independent planning

In AI planning, planners typically input a domain model (a description of a set of possible actions which model the domain) as well as the specific problem to be solved specified by the initial state and goal, in contrast to those in which there is no input domain specified. Such planners are called "domain independent" to emphasize the fact that they can solve planning problems from a wide range of domains. Typical examples of domains are block-stacking, logistics, workflow management, and robot task planning. Hence a single domain-independent planner can be used to solve planning problems in all these various domains. On the other hand, a route planner is typical of a domain-specific planner.

Planning domain modelling languages

The most commonly used languages for representing planning domains and specific planning problems, such as STRIPS and PDDL for Classical Planning, are based on state variables. Each possible state of the world is an assignment of values to the state variables, and actions determine how the values of the state variables change when that action is taken. Since a set of state variables induce a state space that has a size that is exponential in the set, planning, similarly to many other computational problems, suffers from the curse of dimensionality and the combinatorial explosion.

An alternative language for describing planning problems is that of hierarchical task networks, in which a set of tasks is given, and each task can be either realized by a primitive action or decomposed into a set of other tasks. This does not necessarily involve state variables, although in more realistic applications state variables simplify the description of task networks.

Algorithms for planning

Classical planning

Reduction to other problems

Temporal planning

Temporal planning can be solved with methods similar to classical planning. The main difference is, because of the possibility of several, temporally overlapping actions with a duration being taken concurrently, that the definition of a state has to include information about the current absolute time and how far the execution of each active action has proceeded. Further, in planning with rational or real time, the state space may be infinite, unlike in classical planning or planning with integer time. Temporal planning is closely related to scheduling problems when uncertainty is involved and can also be understood in terms of timed automata. The Simple Temporal Network with Uncertainty (STNU) is a scheduling problem which involves controllable actions, uncertain events and temporal constraints. Dynamic Controllability for such problems is a type of scheduling which requires a temporal planning strategy to activate controllable actions reactively as uncertain events are observed so that all constraints are guaranteed to be satisfied. [2]

Probabilistic planning

Probabilistic planning can be solved with iterative methods such as value iteration and policy iteration, when the state space is sufficiently small. With partial observability, probabilistic planning is similarly solved with iterative methods, but using a representation of the value functions defined for the space of beliefs instead of states.

Preference-based planning

In preference-based planning, the objective is not only to produce a plan but also to satisfy user-specified preferences. A difference to the more common reward-based planning, for example corresponding to MDPs, preferences don't necessarily have a precise numerical value.

Conditional planning

Deterministic planning was introduced with the STRIPS planning system, which is a hierarchical planner. Action names are ordered in a sequence and this is a plan for the robot. Hierarchical planning can be compared with an automatic generated behavior tree. [3] The disadvantage is, that a normal behavior tree is not so expressive like a computer program. That means, the notation of a behavior graph contains action commands, but no loops or if-then-statements. Conditional planning overcomes the bottleneck and introduces an elaborated notation which is similar to a control flow, known from other programming languages like Pascal. It is very similar to program synthesis, which means a planner generates sourcecode which can be executed by an interpreter. [4]

An early example of a conditional planner is “Warplan-C” which was introduced in the mid 1970s. [5] What is the difference between a normal sequence and a complicated plan, which contains if-then-statements? It has to do with uncertainty at runtime of a plan. The idea is that a plan can react to sensor signals which are unknown for the planner. The planner generates two choices in advance. For example, if an object was detected, then action A is executed, if an object is missing, then action B is executed. [6] A major advantage of conditional planning is the ability to handle partial plans. [7] An agent is not forced to plan everything from start to finish but can divide the problem into chunks. This helps to reduce the state space and solves much more complex problems.

Contingency planning

We speak of "contingent planning" when the environment is observable through sensors, which can be faulty. It is thus a situation where the planning agent acts under incomplete information. For a contingent planning problem, a plan is no longer a sequence of actions but a decision tree because each step of the plan is represented by a set of states rather than a single perfectly observable state, as in the case of classical planning. [8] The selected actions depend on the state of the system. For example, if it rains, the agent chooses to take the umbrella, and if it doesn't, they may choose not to take it.

Michael L. Littman showed in 1998 that with branching actions, the planning problem becomes EXPTIME-complete. [9] [10] A particular case of contiguous planning is represented by FOND problems - for "fully-observable and non-deterministic". If the goal is specified in LTLf (linear time logic on finite trace) then the problem is always EXPTIME-complete [11] and 2EXPTIME-complete if the goal is specified with LDLf.

Conformant planning

Conformant planning is when the agent is uncertain about the state of the system, and it cannot make any observations. The agent then has beliefs about the real world, but cannot verify them with sensing actions, for instance. These problems are solved by techniques similar to those of classical planning, [12] [13] but where the state space is exponential in the size of the problem, because of the uncertainty about the current state. A solution for a conformant planning problem is a sequence of actions. Haslum and Jonsson have demonstrated that the problem of conformant planning is EXPSPACE-complete, [14] and 2EXPTIME-complete when the initial situation is uncertain, and there is non-determinism in the actions outcomes. [10]

Deployment of planning systems

See also

Lists

Related Research Articles

Logic programming is a programming, database and knowledge representation paradigm based on formal logic. A logic program is a set of sentences in logical form, representing knowledge about some problem domain. Computation is performed by applying logical reasoning to that knowledge, to solve problems in the domain. Major logic programming language families include Prolog, Answer Set Programming (ASP) and Datalog. In all of these languages, rules are written in the form of clauses:

Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent ought to take actions in a dynamic environment in order to maximize the cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning.

Constraint programming (CP) is a paradigm for solving combinatorial problems that draws on a wide range of techniques from artificial intelligence, computer science, and operations research. In constraint programming, users declaratively state the constraints on the feasible solutions for a set of decision variables. Constraints differ from the common primitives of imperative programming languages in that they do not specify a step or sequence of steps to execute, but rather the properties of a solution to be found. In addition to constraints, users also need to specify a method to solve these constraints. This typically draws upon standard methods like chronological backtracking and constraint propagation, but may use customized code like a problem-specific branching heuristic.

A Bayesian network is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables, which is solved by constraint satisfaction methods. CSPs are the subject of research in both artificial intelligence and operations research, since the regularity in their formulation provides a common basis to analyze and solve problems of many seemingly unrelated families. CSPs often exhibit high complexity, requiring a combination of heuristics and combinatorial search methods to be solved in a reasonable time. Constraint programming (CP) is the field of research that specifically focuses on tackling these kinds of problems. Additionally, the Boolean satisfiability problem (SAT), satisfiability modulo theories (SMT), mixed integer programming (MIP) and answer set programming (ASP) are all fields of research focusing on the resolution of particular forms of the constraint satisfaction problem.

<span class="mw-page-title-main">Symbolic artificial intelligence</span> Methods in artificial intelligence research

In artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems, symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems. The Symbolic AI paradigm led to seminal ideas in search, symbolic programming languages, agents, multi-agent systems, the semantic web, and the strengths and limitations of formal knowledge and reasoning systems.

A blackboard system is an artificial intelligence approach based on the blackboard architectural model, where a common knowledge base, the "blackboard", is iteratively updated by a diverse group of specialist knowledge sources, starting with a problem specification and ending with a solution. Each knowledge source updates the blackboard with a partial solution when its internal constraints match the blackboard state. In this way, the specialists work together to solve the problem. The blackboard model was originally designed as a way to handle complex, ill-defined problems, where the solution is the sum of its parts.

The Planning Domain Definition Language (PDDL) is an attempt to standardize Artificial Intelligence (AI) planning languages. It was first developed by Drew McDermott and his colleagues in 1998 mainly to make the 1998/2000 International Planning Competition (IPC) possible, and then evolved with each competition. The standardization provided by PDDL has the benefit of making research more reusable and easily comparable, though at the cost of some expressive power, compared to domain-specific systems.

The Stanford Research Institute Problem Solver, known by its acronym STRIPS, is an automated planner developed by Richard Fikes and Nils Nilsson in 1971 at SRI International. The same name was later used to refer to the formal language of the inputs to this planner. This language is the base for most of the languages for expressing automated planning problem instances in use today; such languages are commonly known as action languages. This article only describes the language, not the planner.

In artificial intelligence, hierarchical task network (HTN) planning is an approach to automated planning in which the dependency among actions can be given in the form of hierarchically structured networks.

A partially observable Markov decision process (POMDP) is a generalization of a Markov decision process (MDP). A POMDP models an agent decision process in which it is assumed that the system dynamics are determined by an MDP, but the agent cannot directly observe the underlying state. Instead, it must maintain a sensor model and the underlying MDP. Unlike the policy function in MDP which maps the underlying states to the actions, POMDP's policy is a mapping from the history of observations to the actions.

In artificial intelligence, action description language (ADL) is an automated planning and scheduling system in particular for robots. It is considered an advancement of STRIPS. Edwin Pednault proposed this language in 1987. It is an example of an action language.

In computational complexity theory, the complexity class 2-EXPTIME (sometimes called 2-EXP) is the set of all decision problems solvable by a deterministic Turing machine in O(22p(n)) time, where p(n) is a polynomial function of n.

<span class="mw-page-title-main">Sven Koenig (computer scientist)</span> German computer scientist

Sven Koenig is a full professor in computer science at the University of Southern California. He received an M.S. degree in computer science from the University of California at Berkeley in 1991 and a Ph.D. in computer science from Carnegie Mellon University in 1997, advised by Reid Simmons.

In artificial intelligence research, the situated approach builds agents that are designed to behave effectively successfully in their environment. This requires designing AI "from the bottom-up" by focussing on the basic perceptual and motor skills required to survive. The situated approach gives a much lower priority to abstract reasoning or problem-solving skills.

Partial-order planning is an approach to automated planning that maintains a partial ordering between actions and only commits ordering between actions when forced to, that is, ordering of actions is partial. Also this planning doesn't specify which action will come out first when two actions are processed. By contrast, total-order planning maintains a total ordering between all actions at every stage of planning. Given a problem in which some sequence of actions is required in order to achieve a goal, a partial-order plan specifies all actions that need to be taken, but specifies an ordering between actions only where necessary.

In artificial intelligence, preference-based planning is a form of automated planning and scheduling which focuses on producing plans that additionally satisfy as many user-specified preferences as possible. In many problem domains, a task can be accomplished by various sequences of actions. These plans can vary in quality: there can be many ways to solve a problem but one generally prefers a way that is, e.g., cost-effective, quick and safe.

In information technology a reasoning system is a software system that generates conclusions from available knowledge using logical techniques such as deduction and induction. Reasoning systems play an important role in the implementation of artificial intelligence and knowledge-based systems.

Action model learning is an area of machine learning concerned with creation and modification of software agent's knowledge about effects and preconditions of the actions that can be executed within its environment. This knowledge is usually represented in logic-based action description language and used as the input for automated planners.

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

References

  1. Ghallab, Malik; Nau, Dana S.; Traverso, Paolo (2004), Automated Planning: Theory and Practice, Morgan Kaufmann, ISBN   1-55860-856-7, archived from the original on 2009-08-24, retrieved 2008-08-20
  2. Vidal, Thierry (January 1999). "Handling contingency in temporal constraint networks: from consistency to controllabilities". Journal of Experimental & Theoretical Artificial Intelligence. 11 (1): 23--45. CiteSeerX   10.1.1.107.1065 . doi:10.1080/095281399146607.
  3. Neufeld, Xenija and Mostaghim, Sanaz and Sancho-Pradel, Dario and Brand, Sandy (2017). "Building a Planner: A Survey of Planning Systems Used in Commercial Video Games". IEEE Transactions on Games. IEEE.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Sanelli, Valerio and Cashmore, Michael and Magazzeni, Daniele and Iocchi, Luca (2017). Short-term human robot interaction through conditional planning and execution. Proc. of International Conference on Automated Planning and Scheduling (ICAPS). Archived from the original on 2019-08-16. Retrieved 2019-08-16.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  5. Peot, Mark A and Smith, David E (1992). Conditional nonlinear planning (PDF). Artificial Intelligence Planning Systems. Elsevier. pp. 189–197.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  6. Karlsson, Lars (2001). Conditional progressive planning under uncertainty. IJCAI. pp. 431–438.
  7. Liu, Daphne Hao (2008). A survey of planning in intelligent agents: from externally motivated to internally motivated systems (Technical report). Technical Report TR-2008-936, Department of Computer Science, University of Rochester. Archived from the original on 2023-03-15. Retrieved 2019-08-16.
  8. Alexandre Albore; Hector Palacios; Hector Geffner (2009). A Translation-Based Approach to Contingent Planning. International Joint Conference of Artificial Intelligence (IJCAI). Pasadena, CA: AAAI. Archived from the original on 2019-07-03. Retrieved 2019-07-03.
  9. Littman, Michael L. (1997). Probabilistic Propositional Planning: Representations and Complexity. Fourteenth National Conference on Artificial Intelligence. MIT Press. pp. 748–754. Archived from the original on 2019-02-12. Retrieved 2019-02-10.
  10. 1 2 Jussi Rintanen (2004). Complexity of Planning with Partial Observability (PDF). Int. Conf. Automated Planning and Scheduling. AAAI. Archived (PDF) from the original on 2020-10-31. Retrieved 2019-07-03.
  11. De Giacomo, Giuseppe; Rubin, Sasha (2018). Automata-Theoretic Foundations of FOND Planning for LTLf and LDLf Goals. IJCAI. Archived from the original on 2018-07-17. Retrieved 2018-07-17.
  12. Palacios, Hector; Geffner, Hector (2009). "Compiling uncertainty away in conformant planning problems with bounded width". Journal of Artificial Intelligence Research. 35: 623–675. arXiv: 1401.3468 . doi: 10.1613/jair.2708 . Archived from the original on 2020-04-27. Retrieved 2019-08-16.
  13. Albore, Alexandre; Ramírez, Miquel; Geffner, Hector (2011). Effective heuristics and belief tracking for planning with incomplete information. Twenty-First International Conference on Automated Planning and Scheduling (ICAPS). Archived from the original on 2017-07-06. Retrieved 2019-08-16.
  14. Haslum, Patrik; Jonsson, Peter (2000). Some Results on the Complexity of Planning with Incomplete Information. Lecture Notes in Computer Science. Vol. 1809. Springer Berlin Heidelberg. pp. 308–318. doi:10.1007/10720246_24. ISBN   9783540446576. conference: Recent Advances in AI Planning

Further reading