Model checking

Last updated
Elevator control software can be model-checked to verify both safety properties, like "The cabin never moves with its door open", and liveness properties, like "Whenever the n floor's call button is pressed, the cabin will eventually stop at the n floor and open the door". Two One G (cropped).jpg
Elevator control software can be model-checked to verify both safety properties, like "The cabin never moves with its door open", and liveness properties, like "Whenever the n floor's call button is pressed, the cabin will eventually stop at the n floor and open the door".

In computer science, model checking or property checking is a method for checking whether a finite-state model of a system meets a given specification (also known as correctness). This is typically associated with hardware or software systems, where the specification contains liveness requirements (such as avoidance of livelock) as well as safety requirements (such as avoidance of states representing a system crash).

Contents

In order to solve such a problem algorithmically, both the model of the system and its specification are formulated in some precise mathematical language. To this end, the problem is formulated as a task in logic, namely to check whether a structure satisfies a given logical formula. This general concept applies to many kinds of logic and many kinds of structures. A simple model-checking problem consists of verifying whether a formula in the propositional logic is satisfied by a given structure.

Overview

Property checking is used for verification when two descriptions are not equivalent. During refinement, the specification is complemented with details that are unnecessary in the higher-level specification. There is no need to verify the newly introduced properties against the original specification since this is not possible. Therefore, the strict bi-directional equivalence check is relaxed to a one-way property check. The implementation or design is regarded as a model of the system, whereas the specifications are properties that the model must satisfy. [2]

An important class of model-checking methods has been developed for checking models of hardware and software designs where the specification is given by a temporal logic formula. Pioneering work in temporal logic specification was done by Amir Pnueli, who received the 1996 Turing award for "seminal work introducing temporal logic into computing science". [3] Model checking began with the pioneering work of E. M. Clarke, E. A. Emerson, [4] [5] [6] by J. P. Queille, and J. Sifakis. [7] Clarke, Emerson, and Sifakis shared the 2007 Turing Award for their seminal work founding and developing the field of model checking. [8] [9]

Model checking is most often applied to hardware designs. For software, because of undecidability (see computability theory) the approach cannot be fully algorithmic, apply to all systems, and always give an answer; in the general case, it may fail to prove or disprove a given property. In embedded-systems hardware, it is possible to validate a specification delivered, e.g., by means of UML activity diagrams [10] or control-interpreted Petri nets. [11]

The structure is usually given as a source code description in an industrial hardware description language or a special-purpose language. Such a program corresponds to a finite-state machine (FSM), i.e., a directed graph consisting of nodes (or vertices) and edges. A set of atomic propositions is associated with each node, typically stating which memory elements are one. The nodes represent states of a system, the edges represent possible transitions that may alter the state, while the atomic propositions represent the basic properties that hold at a point of execution. [12]

Formally, the problem can be stated as follows: given a desired property, expressed as a temporal logic formula , and a structure with initial state , decide if . If is finite, as it is in hardware, model checking reduces to a graph search.

Symbolic model checking

Instead of enumerating reachable states one at a time, the state space can sometimes be traversed more efficiently by considering large numbers of states at a single step. When such state-space traversal is based on representations of a set of states and transition relations as logical formulas, binary decision diagrams (BDD) or other related data structures, the model-checking method is symbolic.

Historically, the first symbolic methods used BDDs. After the success of propositional satisfiability in solving the planning problem in artificial intelligence (see satplan) in 1996, the same approach was generalized to model checking for linear temporal logic (LTL): the planning problem corresponds to model checking for safety properties. This method is known as bounded model checking. [13] The success of Boolean satisfiability solvers in bounded model checking led to the widespread use of satisfiability solvers in symbolic model checking. [14]

Example

One example of such a system requirement: Between the time an elevator is called at a floor and the time it opens its doors at that floor, the elevator can arrive at that floor at most twice. The authors of "Patterns in Property Specification for Finite-State Verification" translate this requirement into the following LTL formula: [15]

Here, should be read as "always", as "eventually", as "until" and the other symbols are standard logical symbols, for "or", for "and" and for "not".

Techniques

Model-checking tools face a combinatorial blow up of the state-space, commonly known as the state explosion problem, that must be addressed to solve most real-world problems. There are several approaches to combat this problem.

  1. Symbolic algorithms avoid ever explicitly constructing the graph for the FSM; instead, they represent the graph implicitly using a formula in quantified propositional logic. The use of binary decision diagrams (BDDs) was made popular by the work of Ken McMillan, [16] as well as of Olivier Coudert and Jean-Christophe Madre, [17] and the development of open-source BDD manipulation libraries such as CUDD [18] and BuDDy. [19]
  2. Bounded model-checking algorithms unroll the FSM for a fixed number of steps, , and check whether a property violation can occur in or fewer steps. This typically involves encoding the restricted model as an instance of SAT. The process can be repeated with larger and larger values of until all possible violations have been ruled out (cf. Iterative deepening depth-first search).
  3. Abstraction attempts to prove properties of a system by first simplifying it. The simplified system usually does not satisfy exactly the same properties as the original one so that a process of refinement may be necessary. Generally, one requires the abstraction to be sound (the properties proved on the abstraction are true of the original system); however, sometimes the abstraction is not complete (not all true properties of the original system are true of the abstraction). An example of abstraction is to ignore the values of non-Boolean variables and to only consider Boolean variables and the control flow of the program; such an abstraction, though it may appear coarse, may, in fact, be sufficient to prove e.g. properties of mutual exclusion.
  4. Counterexample-guided abstraction refinement (CEGAR) begins checking with a coarse (i.e. imprecise) abstraction and iteratively refines it. When a violation (i.e. counterexample) is found, the tool analyzes it for feasibility (i.e., is the violation genuine or the result of an incomplete abstraction?). If the violation is feasible, it is reported to the user. If it is not, the proof of infeasibility is used to refine the abstraction and checking begins again. [20]

Model-checking tools were initially developed to reason about the logical correctness of discrete state systems, but have since been extended to deal with real-time and limited forms of hybrid systems.

First-order logic

Model checking is also studied in the field of computational complexity theory. Specifically, a first-order logical formula is fixed without free variables and the following decision problem is considered:

Given a finite interpretation, for instance, one described as a relational database, decide whether the interpretation is a model of the formula.

This problem is in the circuit class AC0 . It is tractable when imposing some restrictions on the input structure: for instance, requiring that it has treewidth bounded by a constant (which more generally implies the tractability of model checking for monadic second-order logic), bounding the degree of every domain element, and more general conditions such as bounded expansion, locally bounded expansion, and nowhere-dense structures. [21] These results have been extended to the task of enumerating all solutions to a first-order formula with free variables.[ citation needed ]

Tools

Here is a list of significant model-checking tools:

See also

Related Research Articles

In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful method for constructing models of any set of sentences that is finitely consistent.

In computer science, formal methods are mathematically rigorous techniques for the specification, development, analysis, and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analysis can contribute to the reliability and robustness of a design.

In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification is a key incentive for formal specification of systems, and is at the core of formal methods. It represents an important dimension of analysis and verification in electronic design automation and is one approach to software verification. The use of formal verification enables the highest Evaluation Assurance Level (EAL7) in the framework of common criteria for computer security certification.

In logic, temporal logic is any system of rules and symbolism for representing, and reasoning about, propositions qualified in terms of time. It is sometimes also used to refer to tense logic, a modal logic-based system of temporal logic introduced by Arthur Prior in the late 1950s, with important contributions by Hans Kamp. It has been further developed by computer scientists, notably Amir Pnueli, and logicians.

In logic, linear temporal logic or linear-time temporal logic (LTL) is a modal temporal logic with modalities referring to time. In LTL, one can encode formulae about the future of paths, e.g., a condition will eventually be true, a condition will be true until another fact becomes true, etc. It is a fragment of the more complex CTL*, which additionally allows branching time and quantifiers. LTL is sometimes called propositional temporal logic, abbreviated PTL. In terms of expressive power, linear temporal logic (LTL) is a fragment of first-order logic.

Property Specification Language (PSL) is a temporal logic extending linear temporal logic with a range of operators for both ease of expression and enhancement of expressive power. PSL makes an extensive use of regular expressions and syntactic sugaring. It is widely used in the hardware design and verification industry, where formal verification tools and/or logic simulation tools are used to prove or refute that a given PSL formula holds on a given design.

Computation tree logic (CTL) is a branching-time logic, meaning that its model of time is a tree-like structure in which the future is not determined; there are different paths in the future, any one of which might be an actual path that is realized. It is used in formal verification of software or hardware artifacts, typically by software applications known as model checkers, which determine if a given artifact possesses safety or liveness properties. For example, CTL can specify that when some initial condition is satisfied, then all possible executions of a program avoid some undesirable condition. In this example, the safety property could be verified by a model checker that explores all possible transitions out of program states satisfying the initial condition and ensures that all such executions satisfy the property. Computation tree logic belongs to a class of temporal logics that includes linear temporal logic (LTL). Although there are properties expressible only in CTL and properties expressible only in LTL, all properties expressible in either logic can also be expressed in CTL*.

<span class="mw-page-title-main">Model-based testing</span>

Model-based testing is an application of model-based design for designing and optionally also executing artifacts to perform software testing or system testing. Models can be used to represent the desired behavior of a system under test (SUT), or to represent testing strategies and a test environment. The picture on the right depicts the former approach.

Runtime verification is a computing system analysis and execution approach based on extracting information from a running system and using it to detect and possibly react to observed behaviors satisfying or violating certain properties. Some very particular properties, such as datarace and deadlock freedom, are typically desired to be satisfied by all systems and may be best implemented algorithmically. Other properties can be more conveniently captured as formal specifications. Runtime verification specifications are typically expressed in trace predicate formalisms, such as finite-state machines, regular expressions, context-free patterns, linear temporal logics, etc., or extensions of these. This allows for a less ad-hoc approach than normal testing. However, any mechanism for monitoring an executing system is considered runtime verification, including verifying against test oracles and reference implementations. When formal requirements specifications are provided, monitors are synthesized from them and infused within the system by means of instrumentation. Runtime verification can be used for many purposes, such as security or safety policy monitoring, debugging, testing, verification, validation, profiling, fault protection, behavior modification, etc. Runtime verification avoids the complexity of traditional formal verification techniques, such as model checking and theorem proving, by analyzing only one or a few execution traces and by working directly with the actual system, thus scaling up relatively well and giving more confidence in the results of the analysis, at the expense of less coverage. Moreover, through its reflective capabilities runtime verification can be made an integral part of the target system, monitoring and guiding its execution during deployment.

In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable. It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings. The name is derived from the fact that these expressions are interpreted within ("modulo") a certain formal theory in first-order logic with equality. SMT solvers are tools that aim to solve the SMT problem for a practical subset of inputs. SMT solvers such as Z3 and cvc5 have been used as a building block for a wide range of applications across computer science, including in automated theorem proving, program analysis, program verification, and software testing.

In theoretical computer science, the modal μ-calculus is an extension of propositional modal logic by adding the least fixed point operator μ and the greatest fixed point operator ν, thus a fixed-point logic.

<span class="mw-page-title-main">E. Allen Emerson</span> American computer scientist (1954–2024)

Ernest Allen Emerson II was an American computer scientist and winner of the 2007 Turing Award. He was Professor and Regents Chair at the University of Texas at Austin.

<span class="mw-page-title-main">Construction and Analysis of Distributed Processes</span>

CADP is a toolbox for the design of communication protocols and distributed systems. CADP is developed by the CONVECS team at INRIA Rhone-Alpes and connected to various complementary tools. CADP is maintained, regularly improved, and used in many industrial projects.

TLA<sup>+</sup> Formal specification language

TLA+ is a formal specification language developed by Leslie Lamport. It is used for designing, modelling, documentation, and verification of programs, especially concurrent systems and distributed systems. TLA+ is considered to be exhaustively-testable pseudocode, and its use likened to drawing blueprints for software systems; TLA is an acronym for Temporal Logic of Actions.

In the mathematical fields of graph theory and finite model theory, the logic of graphs deals with formal specifications of graph properties using sentences of mathematical logic. There are several variations in the types of logical operation that can be used in these sentences. The first-order logic of graphs concerns sentences in which the variables and predicates concern individual vertices and edges of a graph, while monadic second-order graph logic allows quantification over sets of vertices or edges. Logics based on least fixed point operators allow more general predicates over tuples of vertices, but these predicates can only be constructed through fixed-point operators, restricting their power.

Metric temporal logic (MTL) is a special case of temporal logic. It is an extension of temporal logic in which temporal operators are replaced by time-constrained versions like until, next, since and previous operators. It is a linear-time logic that assumes both the interleaving and fictitious-clock abstractions. It is defined over a point-based weakly-monotonic integer-time semantics.

In model checking, the Metric Interval Temporal Logic (MITL) is a fragment of Metric Temporal Logic (MTL). This fragment is often preferred to MTL because some problems that are undecidable for MTL become decidable for MITL.

In model checking, a branch of computer science, linear time properties are used to describe requirements of a model of a computer system. Example properties include "the vending machine does not dispense a drink until money has been entered" or "the computer program eventually terminates". Fairness properties can be used to rule out unrealistic paths of a model. For instance, in a model of two traffic lights, the liveness property "both traffic lights are green infinitely often" may only be true under the unconditional fairness constraint "each traffic light changes colour infinitely often".

Counterexample-guided abstraction refinement (CEGAR) is a technique for symbolic model checking. It is also applied in modal logic tableau calculi algorithms to optimise their efficiency.

References

  1. For convenience, the example properties are paraphrased in natural language here. Model-checkers require them to be expressed in some formal logic, like LTL.
  2. Lam K., William (2005). "Chapter 1.1: What Is Design Verification?". Hardware Design Verification: Simulation and Formal Method-Based Approaches. Retrieved December 12, 2012.
  3. "Amir Pnueli - A.M. Turing Award Laureate".
  4. Allen Emerson, E.; Clarke, Edmund M. (1980), "Characterizing correctness properties of parallel programs using fixpoints", Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 85, pp. 169–181, doi:10.1007/3-540-10003-2_69, ISBN   978-3-540-10003-4
  5. Edmund M. Clarke, E. Allen Emerson: "Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic". Logic of Programs 1981: 52-71.
  6. Clarke, E. M.; Emerson, E. A.; Sistla, A. P. (1986), "Automatic verification of finite-state concurrent systems using temporal logic specifications", ACM Transactions on Programming Languages and Systems, 8 (2): 244, doi: 10.1145/5397.5399 , S2CID   52853200
  7. Queille, J. P.; Sifakis, J. (1982), "Specification and verification of concurrent systems in CESAR", International Symposium on Programming, Lecture Notes in Computer Science, vol. 137, pp. 337–351, doi:10.1007/3-540-11494-7_22, ISBN   978-3-540-11494-9
  8. "Press Release: ACM Turing Award Honors Founders of Automatic Verification Technology". Archived from the original on 2008-12-28. Retrieved 2009-01-06.
  9. USACM: 2007 Turing Award Winners Announced
  10. Grobelna, Iwona; Grobelny, Michał; Adamski, Marian (2014). "Model Checking of UML Activity Diagrams in Logic Controllers Design". Proceedings of the Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX. June 30 – July 4, 2014, Brunów, Poland. Advances in Intelligent Systems and Computing. Vol. 286. pp. 233–242. doi:10.1007/978-3-319-07013-1_22. ISBN   978-3-319-07012-4.
  11. I. Grobelna, "Formal verification of embedded logic controller specification with computer deduction in temporal logic", Przeglad Elektrotechniczny, Vol.87, Issue 12a, pp.47–50, 2011
  12. This article is based on material taken from Model+checking at the Free On-line Dictionary of Computing prior to 1 November 2008 and incorporated under the "relicensing" terms of the GFDL, version 1.3 or later.
  13. Clarke, E.; Biere, A.; Raimi, R.; Zhu, Y. (2001). "Bounded Model Checking Using Satisfiability Solving". Formal Methods in System Design. 19: 7–34. doi:10.1023/A:1011276507260. S2CID   2484208.
  14. Vizel, Y.; Weissenbacher, G.; Malik, S. (2015). "Boolean Satisfiability Solvers and Their Applications in Model Checking". Proceedings of the IEEE. 103 (11): 2021–2035. doi:10.1109/JPROC.2015.2455034. S2CID   10190144.
  15. Dwyer, M.; Avrunin, G.; Corbett, J. (May 1999). "Patterns in property specifications for finite-state verification". Patterns in Property Specification for Finite-State Verification. Proceedings of the 21st international conference on Software engineering. pp. 411–420. doi:10.1145/302405.302672. ISBN   1581130740.
  16. Coudert, O.; Madre, J.C. (1990). "A unified framework for the formal verification of sequential circuits" (PDF). 1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers. IEEE Comput. Soc. Press. pp. 126–129. doi:10.1109/ICCAD.1990.129859. ISBN   978-0-8186-2055-3.
  17. "CUDD: CU Decision Diagram Package".
  18. "BuDDy – A Binary Decision Diagram Package".
  19. Clarke, Edmund; Grumberg, Orna; Jha, Somesh; Lu, Yuan; Veith, Helmut (2000), "Counterexample-Guided Abstraction Refinement", Computer Aided Verification (PDF), Lecture Notes in Computer Science, vol. 1855, pp. 154–169, doi: 10.1007/10722167_15 , ISBN   978-3-540-67770-3
  20. Dawar, A; Kreutzer, S (2009). "Parameterized complexity of first-order logic" (PDF). ECCC. S2CID   5856640. Archived from the original (PDF) on 2019-03-03.
  21. Storm model checker
  22. Zing

Further reading