In mathematical logic and theoretical computer science, an abstract rewriting system (also (abstract) reduction system or abstract rewrite system; abbreviated ARS) is a formalism that captures the quintessential notion and properties of rewriting systems. In its simplest form, an ARS is simply a set (of "objects") together with a binary relation, traditionally denoted with ; this definition can be further refined if we index (label) subsets of the binary relation. Despite its simplicity, an ARS is sufficient to describe important properties of rewriting systems like normal forms, termination, and various notions of confluence.
Historically, there have been several formalizations of rewriting in an abstract setting, each with its idiosyncrasies. This is due in part to the fact that some notions are equivalent, see below in this article. The formalization that is most commonly encountered in monographs and textbooks, and which is generally followed here, is due to Gérard Huet (1980). [1]
An abstract reduction system (ARS) is the most general (unidimensional) notion about specifying a set of objects and rules that can be applied to transform them. More recently, authors use the term abstract rewriting system as well. [2] (The preference for the word "reduction" here instead of "rewriting" constitutes a departure from the uniform use of "rewriting" in the names of systems that are particularizations of ARS. Because the word "reduction" does not appear in the names of more specialized systems, in older texts reduction system is a synonym for ARS.) [3]
An ARS is a set A, whose elements are usually called objects, together with a binary relation on A, traditionally denoted by →, and called the reduction relation, rewrite relation [2] or just reduction. [3] This (entrenched) terminology using "reduction" is a little misleading, because the relation is not necessarily reducing some measure of the objects.
In some contexts it may be beneficial to distinguish between some subsets of the rules, i.e. some subsets of the reduction relation →, e.g. the entire reduction relation may consist of associativity and commutativity rules. Consequently, some authors define the reduction relation → as the indexed union of some relations; for instance if , the notation used is (A, →1, →2).
As a mathematical object, an ARS is exactly the same as an unlabeled state transition system, and if the relation is considered as an indexed union, then an ARS is the same as a labeled state transition system with the indices being the labels. The focus of the study, and the terminology are different however. In a state transition system one is interested in interpreting the labels as actions, whereas in an ARS the focus is on how objects may be transformed (rewritten) into others. [4]
Suppose the set of objects is T = {a, b, c} and the binary relation is given by the rules a → b, b → a, a → c, and b → c. Observe that these rules can be applied to both a and b to get c. Furthermore, nothing can be applied to c to transform it any further. Such a property is clearly an important one.
First define some basic notions and notations. [5]
An object x in A is called reducible if there exist some other y in A and ; otherwise it is called irreducible or a normal form. An object y is called a normal form of x if and y is irreducible. If x has a unique normal form, then this is usually denoted with . In example 1 above, c is a normal form, and . If every object has at least one normal form, the ARS is called normalizing.
A related, but weaker notion than the existence of normal forms is that of two objects being joinable: x and y are said to be joinable if there exists some z with the property that . From this definition, it's apparent one may define the joinability relation as , where is the composition of relations. Joinability is usually denoted, somewhat confusingly, also with , but in this notation the down arrow is a binary relation, i.e. we write if x and y are joinable.
An ARS is said to possess the Church–Rosser property if and only if implies for all objects x, y. Equivalently, the Church–Rosser property means that the reflexive transitive symmetric closure is contained in the joinability relation. Alonzo Church and J. Barkley Rosser proved in 1936 that lambda calculus has this property; [6] hence the name of the property. [7] In an ARS with the Church–Rosser property the word problem may be reduced to the search for a common successor. In a Church–Rosser system, an object has at most one normal form; that is, the normal form of an object is unique if it exists, but it may well not exist.
Various properties, simpler than Church–Rosser, are equivalent to it. The existence of these equivalent properties allows one to prove that a system is Church–Rosser with less work. Furthermore, the notions of confluence can be defined as properties of a particular object, something that's not possible for Church–Rosser. An ARS is said to be,
Theorem. For an ARS the following three conditions are equivalent: (i) it has the Church–Rosser property, (ii) it is confluent, (iii) it is semi-confluent. [8]
Corollary. [9] In a confluent ARS if then
Because of these equivalences, a fair bit of variation in definitions is encountered in the literature. For instance, in Terese the Church–Rosser property and confluence are defined to be synonymous and identical to the definition of confluence presented here; Church–Rosser as defined here remains unnamed, but is given as an equivalent property; this departure from other texts is deliberate. [10] Because of the above corollary, one may define a normal form y of x as an irreducible y with the property that . This definition, found in Book and Otto, is equivalent to the common one given here in a confluent system, but it is more inclusive in a non-confluent ARS.
Local confluence on the other hand is not equivalent with the other notions of confluence given in this section, but it is strictly weaker than confluence. The typical counterexample is , which is locally confluent but not confluent (cf. picture).
An abstract rewriting system is said to be terminating or noetherian if there is no infinite chain . (This is just saying that the rewriting relation is a Noetherian relation.) In a terminating ARS, every object has at least one normal form, thus it is normalizing. The converse is not true. In example 1 for instance, there is an infinite rewriting chain, namely , even though the system is normalizing. A confluent and terminating ARS is called canonical, [11] or convergent. In a convergent ARS, every object has a unique normal form. But it is sufficient for the system to be confluent and normalizing for a unique normal to exist for every element, as seen in example 1.
Theorem (Newman's Lemma): A terminating ARS is confluent if and only if it is locally confluent.
The original 1942 proof of this result by Newman was rather complicated. It wasn't until 1980 that Huet published a much simpler proof exploiting the fact that when is terminating we can apply well-founded induction. [12]
In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. The name preorder is meant to suggest that preorders are almost partial orders, but not quite, as they are not necessarily antisymmetric.
In lambda calculus, the Church–Rosser theorem states that, when applying reduction rules to terms, the ordering in which the reductions are chosen does not make a difference to the eventual result.
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" or "∃=1". For example, the formal statement
In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems. In their most basic form, they consist of a set of objects, plus relations on how to transform those objects.
The Knuth–Bendix completion algorithm is a semi-decision algorithm for transforming a set of equations into a confluent term rewriting system. When the algorithm succeeds, it effectively solves the word problem for the specified algebra.
The Kripke–Platek set theory with urelements (KPU) is an axiom system for set theory with urelements, based on the traditional (urelement-free) Kripke–Platek set theory. It is considerably weaker than the (relatively) familiar system ZFU. The purpose of allowing urelements is to allow large or high-complexity objects to be included in the theory's transitive models without disrupting the usual well-ordering and recursion-theoretic properties of the constructible universe; KP is so weak that this is hard to do by traditional means.
In formal ontology, a branch of metaphysics, and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts.
Tarski's axioms are an axiom system for Euclidean geometry, specifically for that portion of Euclidean geometry that is formulable in first-order logic with identity. As such, it does not require an underlying set theory. The only primitive objects of the system are "points" and the only primitive predicates are "betweenness" and "congruence". The system contains infinitely many axioms.
In theoretical computer science and mathematical logic a string rewriting system (SRS), historically called a semi-Thue system, is a rewriting system over strings from a alphabet. Given a binary relation between fixed strings over the alphabet, called rewrite rules, denoted by , an SRS extends the rewriting relation to all strings in which the left- and right-hand side of the rules appear as substrings, that is , where , , , and are strings.
In computer science, confluence is a property of rewriting systems, describing which terms in such a system can be rewritten in more than one way, to yield the same result. This article describes the properties in the most abstract setting of an abstract rewriting system.
In computational mathematics, a word problem is the problem of deciding whether two given expressions are equivalent with respect to a set of rewriting identities. A prototypical example is the word problem for groups, but there are many other instances as well. A deep result of computational theory is that answering this question is in many important cases undecidable.
In abstract rewriting, an object is in normal form if it cannot be rewritten any further, i.e. it is irreducible. Depending on the rewriting system, an object may rewrite to several normal forms or none at all. Many properties of rewriting systems relate to normal forms.
In logic, a functionally complete set of logical connectives or Boolean operators is one that can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT.
In mathematics, in the theory of rewriting systems, Newman's lemma, also commonly called the diamond lemma, states that a terminating abstract rewriting system (ARS), that is, one in which there are no infinite reduction sequences, is confluent if it is locally confluent. In fact a terminating ARS is confluent precisely when it is locally confluent.
In mathematical logic, monoidal t-norm based logic, the logic of left-continuous t-norms, is one of the t-norm fuzzy logics. It belongs to the broader class of substructural logics, or logics of residuated lattices; it extends the logic of commutative bounded integral residuated lattices by the axiom of prelinearity.
T-norm fuzzy logics are a family of non-classical logics, informally delimited by having a semantics that takes the real unit interval [0, 1] for the system of truth values and functions called t-norms for permissible interpretations of conjunction. They are mainly used in applied fuzzy logic and fuzzy set theory as a theoretical basis for approximate reasoning.
In mathematical logic, the ancestral relation of a binary relation R is its transitive closure, however defined in a different way, see below.
In computer science, a computation is said to diverge if it does not terminate or terminates in an exceptional state. Otherwise it is said to converge. In domains where computations are expected to be infinite, such as process calculi, a computation is said to diverge if it fails to be productive.
In rewriting, a reduction strategy or rewriting strategy is a relation specifying a rewrite for each object or term, compatible with a given reduction relation. Some authors use the term to refer to an evaluation strategy.
The General Concept Lattice (GCL) proposes a novel general construction of concept hierarchy from formal context, where the conventional Formal Concept Lattice based on Formal Concept Analysis (FCA) only serves as a substructure.