This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Rebeca (acronym for Reactive Objects Language) is an actor-based modeling language with a formal foundation, designed in an effort to bridge the gap between formal verification approaches and real applications. It can be considered as a reference model for concurrent computation, based on an operational interpretation of the actor model. It is also a platform for developing object-based concurrent systems in practice.
Besides having an appropriate and efficient way for modeling concurrent and distributed systems, one needs a formal verification approach to ensure their correctness. Rebeca is supported by a set of verification tools. Earlier tools provided a front-end to work with Rebeca code, and to translate the Rebeca code into input languages of well-known and mature model checkers (like SPIN and NuSMV) and thus, were able to verify their properties. Rebeca, since 2005, is supported by a direct model checker based on Modere (the Model checking Engine of Rebeca). Modular verification and abstraction techniques are used to reduce the state space and make it possible to verify complicated reactive systems. Besides these techniques, Modere supports partial order reduction and symmetry reduction.
In computer science, static program analysis is the analysis of computer programs performed without executing them, in contrast with dynamic program analysis, which is performed on programs during their execution.
In computer engineering, a hardware description language (HDL) is a specialized computer language used to describe the structure and behavior of electronic circuits, and most commonly, digital logic circuits.
In computer science, formal methods are mathematically rigorous techniques for the specification, development, analysis, and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analysis can contribute to the reliability and robustness of a design.
In computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels. CSP was highly influential in the design of the occam programming language and also influenced the design of programming languages such as Limbo, RaftLib, Erlang, Go, Crystal, and Clojure's core.async.
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
In computer science, model checking or property checking is a method for checking whether a finite-state model of a system meets a given specification. This is typically associated with hardware or software systems, where the specification contains liveness requirements as well as safety requirements.
A modeling language is any artificial language that can be used to express data, information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure Programing language.
Computer-aided software engineering (CASE) was a domain of software tools used to design and implement applications. CASE tools were similar to and were partly inspired by Computer-Aided Design (CAD) tools used for designing hardware products. CASE tools were intended to help develop high-quality, defect-free, and maintainable software. CASE software was often associated with methods for the development of information systems together with automated tools that could be used in the software development process.
ESC/Java, the "Extended Static Checker for Java," is a programming tool that attempts to find common run-time errors in Java programs at compile time. The underlying approach used in ESC/Java is referred to as extended static checking, which is a collective name referring to a range of techniques for statically checking the correctness of various program constraints. For example, that an integer variable is greater-than-zero, or lies between the bounds of an array. This technique was pioneered in ESC/Java and can be thought of as an extended form of type checking. Extended static checking usually involves the use of an automated theorem prover and, in ESC/Java, the Simplify theorem prover was used.
SPIN is a general tool for verifying the correctness of concurrent software models in a rigorous and mostly automated fashion. It was written by Gerard J. Holzmann and others in the original Unix group of the Computing Sciences Research Center at Bell Labs, beginning in 1980. The software has been available freely since 1991, and continues to evolve to keep pace with new developments in the field.
Model-based testing is an application of model-based design for designing and optionally also executing artifacts to perform software testing or system testing. Models can be used to represent the desired behavior of a system under test (SUT), or to represent testing strategies and a test environment. The picture on the right depicts the former approach.
In computer science, formal specifications are mathematically based techniques whose purpose are to help with the implementation of systems and software. They are used to describe a system, to analyze its behavior, and to aid in its design by verifying key properties of interest through rigorous and effective reasoning tools. These specifications are formal in the sense that they have a syntax, their semantics fall within one domain, and they are able to be used to infer useful information.
Runtime verification is a computing system analysis and execution approach based on extracting information from a running system and using it to detect and possibly react to observed behaviors satisfying or violating certain properties. Some very particular properties, such as datarace and deadlock freedom, are typically desired to be satisfied by all systems and may be best implemented algorithmically. Other properties can be more conveniently captured as formal specifications. Runtime verification specifications are typically expressed in trace predicate formalisms, such as finite state machines, regular expressions, context-free patterns, linear temporal logics, etc., or extensions of these. This allows for a less ad-hoc approach than normal testing. However, any mechanism for monitoring an executing system is considered runtime verification, including verifying against test oracles and reference implementations. When formal requirements specifications are provided, monitors are synthesized from them and infused within the system by means of instrumentation. Runtime verification can be used for many purposes, such as security or safety policy monitoring, debugging, testing, verification, validation, profiling, fault protection, behavior modification, etc. Runtime verification avoids the complexity of traditional formal verification techniques, such as model checking and theorem proving, by analyzing only one or a few execution traces and by working directly with the actual system, thus scaling up relatively well and giving more confidence in the results of the analysis, at the expense of less coverage. Moreover, through its reflective capabilities runtime verification can be made an integral part of the target system, monitoring and guiding its execution during deployment.
NuSMV is a reimplementation and extension of SMV symbolic model checker, the first model checking tool based on binary decision diagrams (BDDs). The tool has been designed as an open architecture for model checking. It is aimed at reliable verification of industrially sized designs, for use as a backend for other verification tools and as a research tool for formal verification techniques.
ISP is a tool for the formal verification of MPI programs developed within the School of Computing at the University of Utah. Like model checkers, such as SPIN, ISP verifies the complete state space of a system for a set of safety properties. However, unlike model checkers, ISP performs code level verification. This means that the tool verifies all relevant interleavings of a concurrent program by replaying the actual program code without building verification models. This idea was pioneered in a number of tools, notably by Godefroid, in his VeriSoft tool. Other recent tools of this genre include the Java Pathfinder, Microsoft's CHESS tool, and MODIST. Relevant interleavings are computed using a customized dynamic partial order reduction algorithm called POE.
CADP is a toolbox for the design of communication protocols and distributed systems. CADP is developed by the CONVECS team at INRIA Rhone-Alpes and connected to various complementary tools. CADP is maintained, regularly improved, and used in many industrial projects.
Infer, sometimes referred to as "Facebook Infer", is a static code analysis tool developed by an engineering team at Facebook along with open-source contributors. It provides support for Java, C, C++, and Objective-C, and is deployed at Facebook in the analysis of its Android and iOS apps.
Murφ is an explicit-state model checker developed at Stanford University, and widely used for formal verification of cache-coherence protocols.