Boolean satisfiability problem

Last updated

In logic and computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbreviated SATISFIABILITY, SAT or B-SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. If this is the case, the formula is called satisfiable. On the other hand, if no such assignment exists, the function expressed by the formula is FALSE for all possible variable assignments and the formula is unsatisfiable. For example, the formula "a AND NOT b" is satisfiable because one can find the values a = TRUE and b = FALSE, which make (a AND NOT b) = TRUE. In contrast, "a AND NOT a" is unsatisfiable.

Contents

SAT is the first problem that was proven to be NP-complete; see Cook–Levin theorem. This means that all problems in the complexity class NP, which includes a wide range of natural decision and optimization problems, are at most as difficult to solve as SAT. There is no known algorithm that efficiently solves each SAT problem, and it is generally believed that no such algorithm exists; yet this belief has not been proved mathematically, and resolving the question of whether SAT has a polynomial-time algorithm is equivalent to the P versus NP problem, which is a famous open problem in the theory of computing.

Nevertheless, as of 2007, heuristic SAT-algorithms are able to solve problem instances involving tens of thousands of variables and formulas consisting of millions of symbols, [1] which is sufficient for many practical SAT problems from, e.g., artificial intelligence, circuit design, [2] and automatic theorem proving.

Definitions

A propositional logic formula, also called Boolean expression, is built from variables, operators AND (conjunction, also denoted by ∧), OR (disjunction, ∨), NOT (negation, ¬), and parentheses. A formula is said to be satisfiable if it can be made TRUE by assigning appropriate logical values (i.e. TRUE, FALSE) to its variables. The Boolean satisfiability problem (SAT) is, given a formula, to check whether it is satisfiable. This decision problem is of central importance in many areas of computer science, including theoretical computer science, complexity theory, [3] [4] algorithmics, cryptography [5] [6] and artificial intelligence. [7] [ additional citation(s) needed ]

Conjunctive normal form

A literal is either a variable (in which case it is called a positive literal) or the negation of a variable (called a negative literal). A clause is a disjunction of literals (or a single literal). A clause is called a Horn clause if it contains at most one positive literal. A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses (or a single clause). For example, x1 is a positive literal, ¬x2 is a negative literal, x1 ∨ ¬x2 is a clause. The formula (x1 ∨ ¬x2) ∧ (¬x1x2x3) ∧ ¬x1 is in conjunctive normal form; its first and third clauses are Horn clauses, but its second clause is not. The formula is satisfiable, by choosing x1 = FALSE, x2 = FALSE, and x3 arbitrarily, since (FALSE ∨ ¬FALSE) ∧ (¬FALSE ∨ FALSE ∨ x3) ∧ ¬FALSE evaluates to (FALSE ∨ TRUE) ∧ (TRUE ∨ FALSE ∨ x3) ∧ TRUE, and in turn to TRUE ∧ TRUE ∧ TRUE (i.e. to TRUE). In contrast, the CNF formula a ∧ ¬a, consisting of two clauses of one literal, is unsatisfiable, since for a=TRUE or a=FALSE it evaluates to TRUE ∧ ¬TRUE (i.e., FALSE) or FALSE ∧ ¬FALSE (i.e., again FALSE), respectively.

For some versions of the SAT problem, it is useful to define the notion of a generalized conjunctive normal form formula, viz. as a conjunction of arbitrarily many generalized clauses, the latter being of the form R(l1,...,ln) for some Boolean function R and (ordinary) literals li. Different sets of allowed Boolean functions lead to different problem versions. As an example, Rx,a,b) is a generalized clause, and Rx,a,b) ∧ R(b,y,c) ∧ R(c,dz) is a generalized conjunctive normal form. This formula is used below, with R being the ternary operator that is TRUE just when exactly one of its arguments is.

Using the laws of Boolean algebra, every propositional logic formula can be transformed into an equivalent conjunctive normal form, which may, however, be exponentially longer. For example, transforming the formula (x1y1) ∨ (x2y2) ∨ ... ∨ (xnyn) into conjunctive normal form yields

(x1  x2    xn) ∧
(y1  x2    xn) ∧
(x1  y2    xn) ∧
(y1  y2    xn) ∧ ... ∧
(x1  x2    yn) ∧
(y1  x2    yn) ∧
(x1  y2    yn) ∧
(y1  y2    yn);

while the former is a disjunction of n conjunctions of 2 variables, the latter consists of 2n clauses of n variables.

However, with use of the Tseytin transformation, we may find an equisatisfiable conjunctive normal form formula with length linear in the size of the original propositional logic formula.

Complexity

SAT was the first known NP-complete problem, as proved by Stephen Cook at the University of Toronto in 1971 [8] and independently by Leonid Levin at the Russian Academy of Sciences in 1973. [9] Until that time, the concept of an NP-complete problem did not even exist. The proof shows how every decision problem in the complexity class NP can be reduced to the SAT problem for CNF [note 1] formulas, sometimes called CNFSAT. A useful property of Cook's reduction is that it preserves the number of accepting answers. For example, deciding whether a given graph has a 3-coloring is another problem in NP; if a graph has 17 valid 3-colorings, the SAT formula produced by the Cook–Levin reduction will have 17 satisfying assignments.

NP-completeness only refers to the run-time of the worst case instances. Many of the instances that occur in practical applications can be solved much more quickly. See Algorithms for solving SAT below.

3-satisfiability

The 3-SAT instance (x [?] x [?] y) [?] (!x [?] !y [?] !y) [?] (!x [?] y [?] y) reduced to a clique problem. The green vertices form a 3-clique and correspond to the satisfying assignment x=FALSE, y=TRUE. Sat reduced to Clique from Sipser.svg
The 3-SAT instance (xxy) ∧ (¬x ∨ ¬y ∨ ¬y) ∧ (¬xyy) reduced to a clique problem. The green vertices form a 3-clique and correspond to the satisfying assignment x=FALSE, y=TRUE.

Like the satisfiability problem for arbitrary formulas, determining the satisfiability of a formula in conjunctive normal form where each clause is limited to at most three literals is NP-complete also; this problem is called 3-SAT, 3CNFSAT, or 3-satisfiability. To reduce the unrestricted SAT problem to 3-SAT, transform each clause l1 ∨ ⋯ ∨ ln to a conjunction of n - 2 clauses

(l1l2x2) ∧
x2l3x3) ∧
x3l4x4) ∧ ⋯ ∧
xn − 3ln − 2xn − 2) ∧
xn − 2ln − 1ln)

where x2,,xn − 2 are fresh variables not occurring elsewhere. Although the two formulas are not logically equivalent, they are equisatisfiable. The formula resulting from transforming all clauses is at most 3 times as long as its original, i.e. the length growth is polynomial. [10]

3-SAT is one of Karp's 21 NP-complete problems, and it is used as a starting point for proving that other problems are also NP-hard. [note 2] This is done by polynomial-time reduction from 3-SAT to the other problem. An example of a problem where this method has been used is the clique problem: given a CNF formula consisting of c clauses, the corresponding graph consists of a vertex for each literal, and an edge between each two non-contradicting [note 3] literals from different clauses, cf. picture. The graph has a c-clique if and only if the formula is satisfiable. [11]

There is a simple randomized algorithm due to Schöning (1999) that runs in time (4/3)n where n is the number of variables in the 3-SAT proposition, and succeeds with high probability to correctly decide 3-SAT. [12]

The exponential time hypothesis asserts that no algorithm can solve 3-SAT (or indeed k-SAT for any ) in exp(o(n)) time (i.e., fundamentally faster than exponential in n).

Selman, Mitchell, and Levesque (1996) give empirical data on the difficulty of randomly generated 3-SAT formulas, depending on their size parameters. Difficulty is measured in number recursive calls made by a DPLL algorithm. They identified a phase transition region from almost certainly satisfiable to almost certainly unsatisfiable formulas at the clauses-to-variables ratio at about 4.26. [13]

3-satisfiability can be generalized to k-satisfiability (k-SAT, also k-CNF-SAT), when formulas in CNF are considered with each clause containing up to k literals.[ citation needed ] However, since for any k ≥ 3, this problem can neither be easier than 3-SAT nor harder than SAT, and the latter two are NP-complete, so must be k-SAT.

Some authors restrict k-SAT to CNF formulas with exactly k literals.[ citation needed ] This doesn't lead to a different complexity class either, as each clause l1 ∨ ⋯ ∨ lj with j < k literals can be padded with fixed dummy variables to l1 ∨ ⋯ ∨ ljdj+1 ∨ ⋯ ∨ dk. After padding all clauses, 2k-1 extra clauses [note 4] have to be appended to ensure that only d1 = ⋯ = dk=FALSE can lead to a satisfying assignment. Since k doesn't depend on the formula length, the extra clauses lead to a constant increase in length. For the same reason, it does not matter whether duplicate literals are allowed in clauses, as in ¬x ∨ ¬y ∨ ¬y.

Special cases of SAT

Conjunctive normal form

Conjunctive normal form (in particular with 3 literals per clause) is often considered the canonical representation for SAT formulas. As shown above, the general SAT problem reduces to 3-SAT, the problem of determining satisfiability for formulas in this form.

Disjunctive normal form

SAT is trivial if the formulas are restricted to those in disjunctive normal form , that is, they are a disjunction of conjunctions of literals. Such a formula is indeed satisfiable if and only if at least one of its conjunctions is satisfiable, and a conjunction is satisfiable if and only if it does not contain both x and NOT x for some variable x. This can be checked in linear time. Furthermore, if they are restricted to being in full disjunctive normal form, in which every variable appears exactly once in every conjunction, they can be checked in constant time (each conjunction represents one satisfying assignment). But it can take exponential time and space to convert a general SAT problem to disjunctive normal form; for an example exchange "∧" and "∨" in the above exponential blow-up example for conjunctive normal forms.

Exactly-1 3-satisfiability

Left: Schaefer's reduction of a 3-SAT clause x [?] y [?] z. The result of R is TRUE (1) if exactly one of its arguments is TRUE, and FALSE (0) otherwise. All 8 combinations of values for x,y,z are examined, one per line. The fresh variables a,...,f can be chosen to satisfy all clauses (exactly one green argument for each R) in all lines except the first, where x [?] y [?] z is FALSE. Right: A simpler reduction with the same properties. Schaefer's 3-SAT to 1-in-3-SAT reduction.gif
Left: Schaefer's reduction of a 3-SAT clause xyz. The result of R is TRUE (1) if exactly one of its arguments is TRUE, and FALSE (0) otherwise. All 8 combinations of values for x,y,z are examined, one per line. The fresh variables a,...,f can be chosen to satisfy all clauses (exactly one green argument for each R) in all lines except the first, where xyz is FALSE. Right: A simpler reduction with the same properties.

A variant of the 3-satisfiability problem is the one-in-three 3-SAT (also known variously as 1-in-3-SAT and exactly-1 3-SAT). Given a conjunctive normal form with three literals per clause, the problem is to determine whether there exists a truth assignment to the variables so that each clause has exactly one TRUE literal (and thus exactly two FALSE literals). In contrast, ordinary 3-SAT requires that every clause has at least one TRUE literal. Formally, a one-in-three 3-SAT problem is given as a generalized conjunctive normal form with all generalized clauses using a ternary operator R that is TRUE just if exactly one of its arguments is. When all literals of a one-in-three 3-SAT formula are positive, the satisfiability problem is called one-in-three positive 3-SAT.

One-in-three 3-SAT, together with its positive case, is listed as NP-complete problem "LO4" in the standard reference, Computers and Intractability: A Guide to the Theory of NP-Completeness by Michael R. Garey and David S. Johnson. One-in-three 3-SAT was proved to be NP-complete by Thomas Jerome Schaefer as a special case of Schaefer's dichotomy theorem, which asserts that any problem generalizing Boolean satisfiability in a certain way is either in the class P or is NP-complete. [14]

Schaefer gives a construction allowing an easy polynomial-time reduction from 3-SAT to one-in-three 3-SAT. Let "(x or y or z)" be a clause in a 3CNF formula. Add six fresh Boolean variables a, b, c, d, e, and f, to be used to simulate this clause and no other. Then the formula R(x,a,d) ∧ R(y,b,d) ∧ R(a,b,e) ∧ R(c,d,f) ∧ R(z,c,FALSE) is satisfiable by some setting of the fresh variables if and only if at least one of x, y, or z is TRUE, see picture (left). Thus any 3-SAT instance with m clauses and n variables may be converted into an equisatisfiable one-in-three 3-SAT instance with 5m clauses and n+6m variables. [15] Another reduction involves only four fresh variables and three clauses: Rx,a,b) ∧ R(b,y,c) ∧ R(c,dz), see picture (right).

Not-all-equal 3-satisfiability

Another variant is the not-all-equal 3-satisfiability problem (also called NAE3SAT). Given a conjunctive normal form with three literals per clause, the problem is to determine if an assignment to the variables exists such that in no clause all three literals have the same truth value. This problem is NP-complete, too, even if no negation symbols are admitted, by Schaefer's dichotomy theorem. [14]

Linear SAT

A 3-SAT formula is Linear SAT (LSAT) if each clause (viewed as a set of literals) intersects at most one other clause, and, moreover, if two clauses intersect, then they have exactly one literal in common. An LSAT formula can be depicted as a set of disjoint semi-closed intervals on a line. Deciding whether an LSAT formula is satisfiable is NP-complete. [16]

2-satisfiability

SAT is easier if the number of literals in a clause is limited to at most 2, in which case the problem is called 2-SAT . This problem can be solved in polynomial time, and in fact is complete for the complexity class NL. If additionally all OR operations in literals are changed to XOR operations, the result is called exclusive-or 2-satisfiability, which is a problem complete for the complexity class SL = L.

Horn-satisfiability

The problem of deciding the satisfiability of a given conjunction of Horn clauses is called Horn-satisfiability, or HORN-SAT. It can be solved in polynomial time by a single step of the Unit propagation algorithm, which produces the single minimal model of the set of Horn clauses (w.r.t. the set of literals assigned to TRUE). Horn-satisfiability is P-complete. It can be seen as P's version of the Boolean satisfiability problem. Also, deciding the truth of quantified Horn formulas can be done in polynomial time. [17]

Horn clauses are of interest because they are able to express implication of one variable from a set of other variables. Indeed, one such clause ¬x1 ∨ ... ∨ ¬xny can be rewritten as x1 ∧ ... ∧ xny, that is, if x1,...,xn are all TRUE, then y needs to be TRUE as well.

A generalization of the class of Horn formulae is that of renameable-Horn formulae, which is the set of formulae that can be placed in Horn form by replacing some variables with their respective negation. For example, (x1 ∨ ¬x2) ∧ (¬x1x2x3) ∧ ¬x1 is not a Horn formula, but can be renamed to the Horn formula (x1 ∨ ¬x2) ∧ (¬x1x2 ∨ ¬y3) ∧ ¬x1 by introducing y3 as negation of x3. In contrast, no renaming of (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1x2x3) ∧ ¬x1 leads to a Horn formula. Checking the existence of such a replacement can be done in linear time; therefore, the satisfiability of such formulae is in P as it can be solved by first performing this replacement and then checking the satisfiability of the resulting Horn formula.

A formula with 2 clauses may be unsatisfied (red), 3-satisfied (green), xor-3-satisfied (blue), or/and 1-in-3-satisfied (yellow), depending on the TRUE-literal count in the 1st (hor) and 2nd (vert) clause. Boolean satisfiability vs true literal counts.png
A formula with 2 clauses may be unsatisfied (red), 3-satisfied (green), xor-3-satisfied (blue), or/and 1-in-3-satisfied (yellow), depending on the TRUE-literal count in the 1st (hor) and 2nd (vert) clause.

XOR-satisfiability

Another special case is the class of problems where each clause contains XOR (i.e. exclusive or) rather than (plain) OR operators. [note 5] This is in P, since an XOR-SAT formula can also be viewed as a system of linear equations mod 2, and can be solved in cubic time by Gaussian elimination; [18] see the box for an example. This recast is based on the kinship between Boolean algebras and Boolean rings, and the fact that arithmetic modulo two forms a finite field. Since a XOR b XOR c evaluates to TRUE if and only if exactly 1 or 3 members of {a,b,c} are TRUE, each solution of the 1-in-3-SAT problem for a given CNF formula is also a solution of the XOR-3-SAT problem, and in turn each solution of XOR-3-SAT is a solution of 3-SAT, cf. picture. As a consequence, for each CNF formula, it is possible to solve the XOR-3-SAT problem defined by the formula, and based on the result infer either that the 3-SAT problem is solvable or that the 1-in-3-SAT problem is unsolvable.

Provided that the complexity classes P and NP are not equal, neither 2-, nor Horn-, nor XOR-satisfiability is NP-complete, unlike SAT.

Schaefer's dichotomy theorem

The restrictions above (CNF, 2CNF, 3CNF, Horn, XOR-SAT) bound the considered formulae to be conjunctions of subformulae; each restriction states a specific form for all subformulae: for example, only binary clauses can be subformulae in 2CNF.

Schaefer's dichotomy theorem states that, for any restriction to Boolean functions that can be used to form these subformulae, the corresponding satisfiability problem is in P or NP-complete. The membership in P of the satisfiability of 2CNF, Horn, and XOR-SAT formulae are special cases of this theorem. [14]

The following table summarizes some common variants of SAT.

CodeNameRestrictionsRequirementsClass
3SAT3-satisfiabilityEach clause contains 3 literals.At least one literal must be true.NP-c
2SAT2-satisfiabilityEach clause contains 2 literals.At least one literal must be true.NL-c
1-in-3-SATExactly-1 3-SATEach clause contains 3 literals.Exactly one literal must be true.NP-c
1-in-3-SAT+Exactly-1 Positive 3-SATEach clause contains 3 positive literals.Exactly one literal must be true.NP-c
NAE3SATNot-all-equal 3-satisfiabilityEach clause contains 3 literals.Either one or two literals must be true.NP-c
NAE3SAT+Not-all-equal positive 3-SATEach clause contains 3 positive literals.Either one or two literals must be true.NP-c
PL-SAT Planar SAT The incidence graph (clause-variable graph) is planar.At least one literal must be true.NP-c
LSATLinear SATEach clause contains 3 literals, intersects at most one other clause, and the intersection is exactly one literal.At least one literal must be true.NP-c
HORN-SATHorn satisfiabilityHorn clauses (at most one positive literal).At least one literal must be true.P-c
XOR-SATXor satisfiabilityEach clause contains XOR operations rather than OR.The XOR of all literals must be true.P

Extensions of SAT

An extension that has gained significant popularity since 2003 is satisfiability modulo theories (SMT) that can enrich CNF formulas with linear constraints, arrays, all-different constraints, uninterpreted functions, [19] etc. Such extensions typically remain NP-complete, but very efficient solvers are now available that can handle many such kinds of constraints.

The satisfiability problem becomes more difficult if both "for all" () and "there exists" () quantifiers are allowed to bind the Boolean variables. An example of such an expression would be xyz (xyz) ∧ (¬x ∨ ¬y ∨ ¬z); it is valid, since for all values of x and y, an appropriate value of z can be found, viz. z=TRUE if both x and y are FALSE, and z=FALSE else. SAT itself (tacitly) uses only ∃ quantifiers. If only ∀ quantifiers are allowed instead, the so-called tautology problem is obtained, which is co-NP-complete. If both quantifiers are allowed, the problem is called the quantified Boolean formula problem (QBF), which can be shown to be PSPACE-complete. It is widely believed that PSPACE-complete problems are strictly harder than any problem in NP, although this has not yet been proved. Using highly parallel P systems , QBF-SAT problems can be solved in linear time. [20]

Ordinary SAT asks if there is at least one variable assignment that makes the formula true. A variety of variants deal with the number of such assignments:

Other generalizations include satisfiability for first- and second-order logic, constraint satisfaction problems, 0-1 integer programming.

Finding a satisfying assignment

While SAT is a decision problem, the search problem of finding a satisfying assignment reduces to SAT. That is, each algorithm which correctly answers if an instance of SAT is solvable can be used to find a satisfying assignment. First, the question is asked on the given formula Φ. If the answer is "no", the formula is unsatisfiable. Otherwise, the question is asked on the partly instantiated formula Φ{x1=TRUE}, i.e. Φ with the first variable x1 replaced by TRUE, and simplified accordingly. If the answer is "yes", then x1=TRUE, otherwise x1=FALSE. Values of other variables can be found subsequently in the same way. In total, n+1 runs of the algorithm are required, where n is the number of distinct variables in Φ.

This property is used in several theorems in complexity theory:

NPP/polyPH = Σ2   (Karp–Lipton theorem)
NPBPPNP = RP
P = NPFP = FNP

Algorithms for solving SAT

Since the SAT problem is NP-complete, only algorithms with exponential worst-case complexity are known for it. In spite of this, efficient and scalable algorithms for SAT were developed during the 2000s and have contributed to dramatic advances in our ability to automatically solve problem instances involving tens of thousands of variables and millions of constraints (i.e. clauses). [1] Examples of such problems in electronic design automation (EDA) include formal equivalence checking, model checking, formal verification of pipelined microprocessors, [19] automatic test pattern generation, routing of FPGAs, [26] planning, and scheduling problems, and so on. A SAT-solving engine is also considered to be an essential component in the electronic design automation toolbox.

Major techniques used by modern SAT solvers include the Davis–Putnam–Logemann–Loveland algorithm (or DPLL), conflict-driven clause learning (CDCL), and stochastic local search algorithms such as WalkSAT. Almost all SAT solvers include time-outs, so they will terminate in reasonable time even if they cannot find a solution. Different SAT solvers will find different instances easy or hard, and some excel at proving unsatisfiability, and others at finding solutions. Recent attempts have been made to learn an instance's satisfiability using deep learning techniques. [27]

SAT solvers are developed and compared in SAT-solving contests. [28] Modern SAT solvers are also having significant impact on the fields of software verification, constraint solving in artificial intelligence, and operations research, among others.

See also

Notes

  1. The SAT problem for arbitrary formulas is NP-complete, too, since it is easily shown to be in NP, and it cannot be easier than SAT for CNF formulas.
  2. i.e. at least as hard as every other problem in NP. A decision problem is NP-complete if and only if it is in NP and is NP-hard.
  3. i.e. such that one literal is not the negation of the other
  4. viz. all maxterms that can be built with d1,⋯,dk, except d1∨⋯∨dk
  5. Formally, generalized conjunctive normal forms with a ternary Boolean function R are employed, which is TRUE just if 1 or 3 of its arguments is. An input clause with more than 3 literals can be transformed into an equisatisfiable conjunction of clauses á 3 literals similar to above; i.e. XOR-SAT can be reduced to XOR-3-SAT.

Related Research Articles

In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logical formula consisting of a disjunction of conjunctions; it can also be described as an OR of ANDs, a sum of products, or a cluster concept. As a normal form, it is useful in automated theorem proving.

In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. As a canonical normal form, it is useful in automated theorem proving and circuit theory.

In mathematical logic and logic programming, a Horn clause is a logical formula of a particular rule-like form that gives it useful properties for use in logic programming, formal specification, universal algebra and model theory. Horn clauses are named for the logician Alfred Horn, who first pointed out their significance in 1951.

In computer science, 2-satisfiability, 2-SAT or just 2SAT is a computational problem of assigning values to variables, each of which has two possible values, in order to satisfy a system of constraints on pairs of variables. It is a special case of the general Boolean satisfiability problem, which can involve constraints on more than two variables, and of constraint satisfaction problems, which can allow more than two choices for the value of each variable. But in contrast to those more general problems, which are NP-complete, 2-satisfiability can be solved in polynomial time.

In computational complexity theory, the Cook–Levin theorem, also known as Cook's theorem, states that the Boolean satisfiability problem is NP-complete. That is, it is in NP, and any problem in NP can be reduced in polynomial time by a deterministic Turing machine to the Boolean satisfiability problem.

In formal logic, Horn-satisfiability, or HORNSAT, is the problem of deciding whether a given set of propositional Horn clauses is satisfiable or not. Horn-satisfiability and Horn clauses are named after Alfred Horn.

<span class="mw-page-title-main">DPLL algorithm</span>

In logic and computer science, the Davis–Putnam–Logemann–Loveland (DPLL) algorithm is a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic formulae in conjunctive normal form, i.e. for solving the CNF-SAT problem.

MAX-3SAT is a problem in the computational complexity subfield of computer science. It generalises the Boolean satisfiability problem (SAT) which is a decision problem considered in complexity theory. It is defined as:

In computational complexity theory, the maximum satisfiability problem (MAX-SAT) is the problem of determining the maximum number of clauses, of a given Boolean formula in conjunctive normal form, that can be made true by an assignment of truth values to the variables of the formula. It is a generalization of the Boolean satisfiability problem, which asks whether there exists a truth assignment that makes all clauses true.

In computational complexity theory, a branch of computer science, Schaefer's dichotomy theorem, proved by Thomas Jerome Schaefer, states necessary and sufficient conditions under which a finite set S of relations over the Boolean domain yields polynomial-time or NP-complete problems when the relations of S are used to constrain some of the propositional variables. It is called a dichotomy theorem because the complexity of the problem defined by S is either in P or is NP-complete, as opposed to one of the classes of intermediate complexity that is known to exist by Ladner's theorem.

In computational complexity theory, a gadget is a subunit of a problem instance that simulates the behavior of one of the fundamental units of a different computational problem. Gadgets are typically used to construct reductions from one computational problem to another, as part of proofs of NP-completeness or other types of computational hardness. The component design technique is a method for constructing reductions by using gadgets.

In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem. On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such values of x and y. In this case, the formula is satisfiable when x is true, so the solver should return "satisfiable". Since the introduction of algorithms for SAT in the 1960s, modern SAT solvers have grown into complex software artifacts involving a large number of heuristics and program optimizations to work efficiently.

MAXEkSAT is a problem in computational complexity theory that is a maximization version of the Boolean satisfiability problem 3SAT. In MAXEkSAT, each clause has exactly k literals, each with distinct variables, and is in conjunctive normal form. These are called k-CNF formulas. The problem is to determine the maximum number of clauses that can be satisfied by a truth assignment to the variables in the clauses.

In computer science, the Sharp Satisfiability Problem is the problem of counting the number of interpretations that satisfy a given Boolean formula, introduced by Valiant in 1979. In other words, it asks in how many ways the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. For example, the formula is satisfiable by three distinct boolean value assignments of the variables, namely, for any of the assignments, , and, we have

In computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by Impagliazzo & Paturi (1999). It states that satisfiability of 3-CNF Boolean formulas cannot be solved in subexponential time, . More precisely, the usual form of the hypothesis asserts the existence of a number such that all algorithms that correctly solve this problem require time at least . The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement. It implies that many computational problems are equivalent in complexity, in the sense that if one of them has a subexponential time algorithm then they all do, and that many known algorithms for these problems have optimal or near-optimal time complexity.

In theoretical computer science, the circuit satisfiability problem is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output true. In other words, it asks whether the inputs to a given Boolean circuit can be consistently set to 1 or 0 such that the circuit outputs 1. If that is the case, the circuit is called satisfiable. Otherwise, the circuit is called unsatisfiable. In the figure to the right, the left circuit can be satisfied by setting both inputs to be 1, but the right circuit is unsatisfiable.

The Tseytin transformation, alternatively written Tseitin transformation, takes as input an arbitrary combinatorial logic circuit and produces an equisatisfiable boolean formula in conjunctive normal form (CNF). The length of the formula is linear in the size of the circuit. Input vectors that make the circuit output "true" are in 1-to-1 correspondence with assignments that satisfy the formula. This reduces the problem of circuit satisfiability on any circuit to the satisfiability problem on 3-CNF formulas. It was discovered by the Russian scientist Grigori Tseitin.

In computer science, conflict-driven clause learning (CDCL) is an algorithm for solving the Boolean satisfiability problem (SAT). Given a Boolean formula, the SAT problem asks for an assignment of variables so that the entire formula evaluates to true. The internal workings of CDCL SAT solvers were inspired by DPLL solvers. The main difference between CDCL and DPLL is that CDCL's back jumping is non-chronological.

In computational complexity theory, a branch of computer science, the Max/min CSP/Ones classification theorems state necessary and sufficient conditions that determine the complexity classes of problems about satisfying a subset S of boolean relations. They are similar to Schaefer's dichotomy theorem, which classifies the complexity of satisfying finite sets of relations; however, the Max/min CSP/Ones classification theorems give information about the complexity of approximating an optimal solution to a problem defined by S.

The Boolean satisfiability problem can be stated formally as: given a Boolean expression with variables, finding an assignment of the variables such that is true. It is seen as the canonical NP-complete problem. While no efficient algorithm is known to solve this problem in the general case, there are certain heuristics, informally called 'rules of thumb' in programming, that can usually help solve the problem reasonably efficiently.

References

  1. 1 2 Ohrimenko, Olga; Stuckey, Peter J.; Codish, Michael (2007), "Propagation = Lazy Clause Generation", Principles and Practice of Constraint Programming – CP 2007, Lecture Notes in Computer Science, vol. 4741, pp. 544–558, CiteSeerX   10.1.1.70.5471 , doi:10.1007/978-3-540-74970-7_39, modern SAT solvers can often handle problems with millions of constraints and hundreds of thousands of variables.
  2. Hong, Ted; Li, Yanjing; Park, Sung-Boem; Mui, Diana; Lin, David; Kaleq, Ziyad Abdel; Hakim, Nagib; Naeimi, Helia; Gardner, Donald S.; Mitra, Subhasish (November 2010). "QED: Quick Error Detection tests for effective post-silicon validation". 2010 IEEE International Test Conference. pp. 1–10. doi:10.1109/TEST.2010.5699215. ISBN   978-1-4244-7206-2. S2CID   7909084.
  3. Karp, Richard M. (1972). "Reducibility Among Combinatorial Problems" (PDF). In Raymond E. Miller; James W. Thatcher (eds.). Complexity of Computer Computations. New York: Plenum. pp. 85–103. ISBN   0-306-30707-3. Archived from the original (PDF) on 2011-06-29. Retrieved 2020-05-07. Here: p.86
  4. Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D. (1974). The Design and Analysis of Computer Algorithms. Addison-Wesley. p. 403. ISBN   0-201-00029-6.
  5. Massacci, Fabio; Marraro, Laura (2000-02-01). "Logical Cryptanalysis as a SAT Problem". Journal of Automated Reasoning. 24 (1): 165–203. doi:10.1023/A:1006326723002. S2CID   3114247.
  6. Mironov, Ilya; Zhang, Lintao (2006). "Applications of SAT Solvers to Cryptanalysis of Hash Functions". In Biere, Armin; Gomes, Carla P. (eds.). Theory and Applications of Satisfiability Testing - SAT 2006. Lecture Notes in Computer Science. Vol. 4121. Springer. pp. 102–115. doi:10.1007/11814948_13. ISBN   978-3-540-37207-3.
  7. Vizel, Y.; Weissenbacher, G.; Malik, S. (2015). "Boolean Satisfiability Solvers and Their Applications in Model Checking". Proceedings of the IEEE. 103 (11): 2021–2035. doi:10.1109/JPROC.2015.2455034. S2CID   10190144.
  8. Cook, Stephen A. (1971). "The complexity of theorem-proving procedures" (PDF). Proceedings of the third annual ACM symposium on Theory of computing - STOC '71. pp. 151–158. CiteSeerX   10.1.1.406.395 . doi:10.1145/800157.805047. S2CID   7573663. Archived (PDF) from the original on 2022-10-09.
  9. Levin, Leonid (1973). "Universal search problems (Russian: Универсальные задачи перебора, Universal'nye perebornye zadachi)". Problems of Information Transmission (Russian: Проблемы передачи информа́ции, Problemy Peredachi Informatsii). 9 (3): 115–116. (pdf) (in Russian), translated into English by Trakhtenbrot, B. A. (1984). "A survey of Russian approaches to perebor (brute-force searches) algorithms". Annals of the History of Computing. 6 (4): 384–400. doi:10.1109/MAHC.1984.10036. S2CID   950581.
  10. Aho, Hopcroft & Ullman (1974), Theorem 10.4.
  11. Aho, Hopcroft & Ullman (1974), Theorem 10.5.
  12. Schöning, Uwe (Oct 1999). "A probabilistic algorithm for k-SAT and constraint satisfaction problems" (PDF). 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039). pp. 410–414. doi:10.1109/SFFCS.1999.814612. ISBN   0-7695-0409-4. S2CID   123177576. Archived (PDF) from the original on 2022-10-09.
  13. Selman, Bart; Mitchell, David; Levesque, Hector (1996). "Generating Hard Satisfiability Problems". Artificial Intelligence. 81 (1–2): 17–29. CiteSeerX   10.1.1.37.7362 . doi:10.1016/0004-3702(95)00045-3.
  14. 1 2 3 Schaefer, Thomas J. (1978). "The complexity of satisfiability problems" (PDF). Proceedings of the 10th Annual ACM Symposium on Theory of Computing. San Diego, California. pp. 216–226. CiteSeerX   10.1.1.393.8951 . doi:10.1145/800133.804350.
  15. Schaefer (1978), p. 222, Lemma 3.5.
  16. Arkin, Esther M.; Banik, Aritra; Carmi, Paz; Citovsky, Gui; Katz, Matthew J.; Mitchell, Joseph S. B.; Simakov, Marina (2018-12-11). "Selecting and covering colored points". Discrete Applied Mathematics. 250: 75–86. doi: 10.1016/j.dam.2018.05.011 . ISSN   0166-218X.
  17. Buning, H.K.; Karpinski, Marek; Flogel, A. (1995). "Resolution for Quantified Boolean Formulas". Information and Computation. Elsevier. 117 (1): 12–18. doi: 10.1006/inco.1995.1025 .
  18. Moore, Cristopher; Mertens, Stephan (2011), The Nature of Computation, Oxford University Press, p. 366, ISBN   9780199233212 .
  19. 1 2 R. E. Bryant, S. M. German, and M. N. Velev, Microprocessor Verification Using Efficient Decision Procedures for a Logic of Equality with Uninterpreted Functions, in Analytic Tableaux and Related Methods, pp. 1–13, 1999.
  20. Alhazov, Artiom; Martín-Vide, Carlos; Pan, Linqiang (2003). "Solving a PSPACE-Complete Problem by Recognizing P Systems with Restricted Active Membranes". Fundamenta Informaticae. 58: 67–77. Here: Sect.3, Thm.3.1
  21. Blass, Andreas; Gurevich, Yuri (1982-10-01). "On the unique satisfiability problem". Information and Control. 55 (1): 80–88. doi: 10.1016/S0019-9958(82)90439-9 . hdl: 2027.42/23842 . ISSN   0019-9958.
  22. "Complexity Zoo:U - Complexity Zoo". complexityzoo.uwaterloo.ca. Archived from the original on 2019-07-09. Retrieved 2019-12-05.
  23. Kozen, Dexter C. (2006). "Supplementary Lecture F: Unique Satisfiability". Theory of Computation. Texts in Computer Science. Springer. p. 180. ISBN   9781846282973.
  24. Valiant, L.; Vazirani, V. (1986). "NP is as easy as detecting unique solutions" (PDF). Theoretical Computer Science. 47: 85–93. doi: 10.1016/0304-3975(86)90135-0 .
  25. Buldas, Ahto; Lenin, Aleksandr; Willemson, Jan; Charnamord, Anton (2017). "Simple Infeasibility Certificates for Attack Trees". In Obana, Satoshi; Chida, Koji (eds.). Advances in Information and Computer Security. Lecture Notes in Computer Science. Vol. 10418. Springer International Publishing. pp. 39–55. doi:10.1007/978-3-319-64200-0_3. ISBN   9783319642000.
  26. Gi-Joon Nam; Sakallah, K. A.; Rutenbar, R. A. (2002). "A new FPGA detailed routing approach via search-based Boolean satisfiability" (PDF). IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 21 (6): 674. doi:10.1109/TCAD.2002.1004311. Archived from the original (PDF) on 2016-03-15. Retrieved 2015-09-04.
  27. Selsam, Daniel; Lamm, Matthew; Bünz, Benedikt; Liang, Percy; de Moura, Leonardo; Dill, David L. (11 March 2019). "Learning a SAT Solver from Single-Bit Supervision". arXiv: 1802.03685 [cs.AI].
  28. "The international SAT Competitions web page" . Retrieved 2007-11-15.

Sources

Further reading

(by date of publication)