P-complete

Last updated

In computational complexity theory, a decision problem is P-complete (complete for the complexity class P) if it is in P and every problem in P can be reduced to it by an appropriate reduction.

Contents

The notion of P-complete decision problems is useful in the analysis of:

specifically when stronger notions of reducibility than polytime-reducibility are considered.

The specific type of reduction used varies and may affect the exact set of problems. Generically, reductions stronger than polynomial-time reductions are used, since all languages in P (except the empty language and the language of all strings) are P-complete under polynomial-time reductions. If we use NC reductions, that is, reductions which can operate in polylogarithmic time on a parallel computer with a polynomial number of processors, then all P-complete problems lie outside NC and so cannot be effectively parallelized, under the unproven assumption that NC  P. If we use the stronger log-space reduction, this remains true, but additionally we learn that all P-complete problems lie outside L under the weaker unproven assumption that L  P. In this latter case the set P-complete may be smaller.

Motivation

The class P, typically taken to consist of all the "tractable" problems for a sequential computer, contains the class NC, which consists of those problems which can be efficiently solved on a parallel computer. This is because parallel computers can be simulated on a sequential machine. It is not known whether NC = P. In other words, it is not known whether there are any tractable problems that are inherently sequential. Just as it is widely suspected that P does not equal NP, so it is widely suspected that NC does not equal P.

Similarly, the class L contains all problems that can be solved by a sequential computer in logarithmic space. Such machines run in polynomial time because they can have a polynomial number of configurations. It is suspected that L  P; that is, that some problems that can be solved in polynomial time also require more than logarithmic space.

Similarly to the use of NP-complete problems to analyze the P = NP question, the P-complete problems, viewed as the "probably not parallelizable" or "probably inherently sequential" problems, serves in a similar manner to study the NC = P question. Finding an efficient way to parallelize the solution to some P-complete problem would show that NC = P. It can also be thought of as the "problems requiring superlogarithmic space"; a log-space solution to a P-complete problem (using the definition based on log-space reductions) would imply L = P.

The logic behind this is analogous to the logic that a polynomial-time solution to an NP-complete problem would prove P = NP: if we have a NC reduction from any problem in P to a problem A, and an NC solution for A, then NC = P. Similarly, if we have a log-space reduction from any problem in P to a problem A, and a log-space solution for A, then L = P.

P-complete problems

The most basic P-complete problem under logspace many-one reductions is following: given a Turing machine , an input for that machine x, and a number T (written in unary), does that machine halt on that input within the first T steps? For any x in in P, output the encoding of the Turing machine which accepts it in polynomial-time, the encoding of x itself, and a number of steps corresponding to the p which is there polynomial-time bound on the operation of the Turing Machine deciding , . The machine M halts on x within steps if and only if x is in L. Clearly, if we can parallelize a general simulation of a sequential computer (ie. The Turing machine simulation of a Turing machine), then we will be able to parallelize any program that runs on that computer. If this problem is in NC, then so is every other problem in P. If the number of steps is written in binary, the problem is EXPTIME-complete. This problem illustrates a common trick in the theory of P-completeness. We aren't really interested in whether a problem can be solved quickly on a parallel machine. We're just interested in whether a parallel machine solves it much more quickly than a sequential machine. Therefore, we have to reword the problem so that the sequential version is in P. That is why this problem required T to be written in unary. If a number T is written as a binary number (a string of n ones and zeros, where n = log T), then the obvious sequential algorithm can take time 2n. On the other hand, if T is written as a unary number (a string of n ones, where n = T), then it only takes time n. By writing T in unary rather than binary, we have reduced the obvious sequential algorithm from exponential time to linear time. That puts the sequential problem in P. Then, it will be in NC if and only if it is parallelizable.

Many other problems have been proved to be P-complete, and therefore are widely believed to be inherently sequential. These include the following problems which are P-complete under at least logspace reductions, either as given, or in a decision-problem form:

Most of the languages above are P-complete under even stronger notions of reduction, such as uniform many-one reductions, DLOGTIME reductions, or polylogarithmic projections.

In order to prove that a given problem in P is P-complete, one typically tries to reduce a known P-complete problem to the given one.

In 1999, Jin-Yi Cai and D. Sivakumar, building on work by Ogihara, showed that if there exists a sparse language that is P-complete, then L = P. [1]

P-complete problems may be solvable with different time complexities. For instance, the Circuit Value Problem can be solved in linear time by a topological sort. Of course, because the reductions to a P-complete problem may have different time complexities, this fact does not imply that all the problems in P can also be solved in linear time.

Problems not known to be P-complete

Some NP-problems are not known to be either NP-complete or in P. These problems (e.g. factoring, graph isomorphism, parity games) are suspected to be difficult[ citation needed ]. Similarly there are problems in P that are not known to be either P-complete or NC, but are thought to be difficult to parallelize. Examples include the decision problem forms of finding the greatest common divisor of two numbers, determining what answer the extended Euclidean algorithm would return when given two numbers, and computing the maximum weight matching of a graph with large integer weights.

Notes

  1. Cai, Jin-Yi; Sivakumar, D. (1999), "Sparse hard sets for P: resolution of a conjecture of Hartmanis", Journal of Computer and System Sciences, 58 (2): 280–296, doi: 10.1006/jcss.1998.1615

Related Research Articles

The P versus NP problem is a major unsolved problem in theoretical computer science. Informally, it asks whether every problem whose solution can be quickly verified can also be quickly solved.

In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm.

<span class="mw-page-title-main">NP (complexity)</span> Complexity class used to classify decision problems

In computational complexity theory, NP is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.

In computational complexity theory, the class NC (for "Nick's Class") is the set of decision problems decidable in polylogarithmic time on a parallel computer with a polynomial number of processors. In other words, a problem with input size n is in NC if there exist constants c and k such that it can be solved in time O((log n)c) using O(nk) parallel processors. Stephen Cook coined the name "Nick's class" after Nick Pippenger, who had done extensive research on circuits with polylogarithmic depth and polynomial size.

The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . The problem is known to be NP-hard. Moreover, some restricted variants of it are NP-complete too, for example:

In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length and if every other problem that can be solved in polynomial space can be transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE.

In computational complexity theory, a polynomial-time reduction is a method for solving one problem using another. One shows that if a hypothetical subroutine solving the second problem exists, then the first problem can be solved by transforming or reducing it to inputs for the second problem and calling the subroutine one or more times. If both the time required to transform the first problem to the second, and the number of times the subroutine is called is polynomial, then the first problem is polynomial-time reducible to the second.

In computability theory and computational complexity theory, a many-one reduction is a reduction that converts instances of one decision problem to another decision problem using a computable function. The reduced instance is in the language if and only if the initial instance is in its language . Thus if we can decide whether instances are in the language , we can decide whether instances are in its language by applying the reduction and solving for . Thus, reductions can be used to measure the relative computational difficulty of two problems. It is said that reduces to if, in layman's terms is at least as hard to solve as . This means that any algorithm that solves can also be used as part of a program that solves .

<span class="mw-page-title-main">Time complexity</span> Estimate of time taken for running an algorithm

In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.

<span class="mw-page-title-main">Complexity class</span> Set of problems in computational complexity theory

In computational complexity theory, a complexity class is a set of computational problems "of related resource-based complexity". The two most commonly analyzed resources are time and memory.

In computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to multiple parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured as a function of the number of bits in the input. This appears to have been first demonstrated in Gurevich, Stockmeyer & Vishkin (1984). The first systematic work on parameterized complexity was done by Downey & Fellows (1999).

In computational complexity theory, P, also known as PTIME or DTIME(nO(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time.

In computational complexity theory, the polynomial hierarchy is a hierarchy of complexity classes that generalize the classes NP and co-NP. Each class in the hierarchy is contained within PSPACE. The hierarchy can be defined using oracle machines or alternating Turing machines. It is a resource-bounded counterpart to the arithmetical hierarchy and analytical hierarchy from mathematical logic. The union of the classes in the hierarchy is denoted PH.

In computational complexity theory, the Cook–Levin theorem, also known as Cook's theorem, states that the Boolean satisfiability problem is NP-complete. That is, it is in NP, and any problem in NP can be reduced in polynomial time by a deterministic Turing machine to the Boolean satisfiability problem.

<span class="mw-page-title-main">Reduction (complexity)</span>

In computability theory and computational complexity theory, a reduction is an algorithm for transforming one problem into another problem. A sufficiently efficient reduction from one problem to another may be used to show that the second problem is at least as difficult as the first.

In computational complexity theory, NL is the complexity class containing decision problems that can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space.

In computational complexity theory, L is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way.

In computational complexity theory, SL is the complexity class of problems log-space reducible to USTCON, which is the problem of determining whether there exists a path between two vertices in an undirected graph, otherwise described as the problem of determining whether two vertices are in the same connected component. This problem is also called the undirected reachability problem. It does not matter whether many-one reducibility or Turing reducibility is used. Although originally described in terms of symmetric Turing machines, that equivalent formulation is very complex, and the reducibility definition is what is used in practice.

<span class="mw-page-title-main">Boolean circuit</span> Model of computation

In computational complexity theory and circuit complexity, a Boolean circuit is a mathematical model for combinational digital logic circuits. A formal language can be decided by a family of Boolean circuits, one circuit for each possible input length.

<span class="mw-page-title-main">NP-completeness</span> Complexity class

In computational complexity theory, a problem is NP-complete when:

  1. It is a decision problem, meaning that for any input to the problem, the output is either "yes" or "no".
  2. When the answer is "yes", this can be demonstrated through the existence of a short solution.
  3. The correctness of each solution can be verified quickly and a brute-force search algorithm can find a solution by trying all possible solutions.
  4. The problem can be used to simulate every other problem for which we can verify quickly that a solution is correct. In this sense, NP-complete problems are the hardest of the problems to which solutions can be verified quickly. If we could find solutions of some NP-complete problem quickly, we could quickly find the solutions of every other problem to which a given solution can be easily verified.

References