NEXPTIME

Last updated

In computational complexity theory, the complexity class NEXPTIME (sometimes called NEXP) is the set of decision problems that can be solved by a non-deterministic Turing machine using time .

Contents

In terms of NTIME,

Alternatively, NEXPTIME can be defined using deterministic Turing machines as verifiers. A language L is in NEXPTIME if and only if there exist polynomials p and q, and a deterministic Turing machine M, such that

We know

P NP EXPTIME NEXPTIME

and also, by the time hierarchy theorem, that

NP ⊊ NEXPTIME

If P = NP, then NEXPTIME = EXPTIME (padding argument); more precisely, ENE if and only if there exist sparse languages in NP that are not in P. [1]

Alternative characterizations

NEXPTIME often arises in the context of interactive proof systems, where there are two major characterizations of it. The first is the MIP proof system, where we have two all-powerful provers which communicate with a randomized polynomial-time verifier (but not with each other). If the string is in the language, they must be able to convince the verifier of this with high probability. If the string is not in the language, they must not be able to collaboratively trick the verifier into accepting the string except with low probability. The fact that MIP proof systems can solve every problem in NEXPTIME is quite impressive when we consider that when only one prover is present, we can only recognize all of PSPACE; the verifier's ability to "cross-examine" the two provers gives it great power. See interactive proof system#MIP for more details.

Another interactive proof system characterizing NEXPTIME is a certain class of probabilistically checkable proofs. Recall that NP can be seen as the class of problems where an all-powerful prover gives a purported proof that a string is in the language, and a deterministic polynomial-time machine verifies that it is a valid proof. We make two changes to this setup:

These two extensions together greatly extend the proof system's power, enabling it to recognize all languages in NEXPTIME. The class is called PCP(poly, poly). What more, in this characterization the verifier may be limited to read only a constant number of bits, i.e. NEXPTIME = PCP(poly, 1). See probabilistically checkable proofs for more details.

NEXPTIME-complete

A decision problem is NEXPTIME-complete if it is in NEXPTIME, and every problem in NEXPTIME has a polynomial-time many-one reduction to it. In other words, there is a polynomial-time algorithm that transforms instances of one to instances of the other with the same answer. Problems that are NEXPTIME-complete might be thought of as the hardest problems in NEXPTIME. We know that NEXPTIME-complete problems are not in NP; it has been proven that these problems cannot be verified in polynomial time, by the time hierarchy theorem.

An important set of NEXPTIME-complete problems relates to succinct circuits. Succinct circuits are simple machines used to describe graphs in exponentially less space. They accept two vertex numbers as input and output whether there is an edge between them. If solving a problem on a graph in a natural representation, such as an adjacency matrix, is NP-complete, then solving the same problem on a succinct circuit representation is NEXPTIME-complete, because the input is exponentially smaller (under some mild condition that the NP-completeness reduction is achieved by a "projection"). [2] [3] As one simple example, finding a Hamiltonian path for a graph thus encoded is NEXPTIME-complete.

See also

Related Research Articles

In computational complexity theory, bounded-error probabilistic polynomial time (BPP) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability bounded away from 1/3 for all instances. BPP is one of the largest practical classes of problems, meaning most problems of interest in BPP have efficient probabilistic algorithms that can be run quickly on real modern machines. BPP also contains P, the class of problems solvable in polynomial time with a deterministic machine, since a deterministic machine is a special case of a probabilistic machine.

The P versus NP problem is a major unsolved problem in computer science. It asks whether every problem whose solution can be quickly verified can also be solved quickly.

Computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm.

NP (complexity) Complexity class used to classify decision problems

In computational complexity theory, NP is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.

In computational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space.

In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length and if every other problem that can be solved in polynomial space can be transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE.

In computational complexity theory, the complexity class EXPTIME is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2p) time, where p(n) is a polynomial function of n.

In computational complexity theory, EXPSPACE is the set of all decision problems solvable by a deterministic Turing machine in exponential space, i.e., in space, where is a polynomial function of . Some authors restrict to be a linear function, but most authors instead call the resulting class ESPACE. If we use a nondeterministic machine instead, we get the class NEXPSPACE, which is equal to EXPSPACE by Savitch's theorem.

Interactive proof system

In computational complexity theory, an interactive proof system is an abstract machine that models computation as the exchange of messages between two parties: a prover and a verifier. The parties interact by exchanging messages in order to ascertain whether a given string belongs to a language or not. The prover possesses unlimited computational resources but cannot be trusted, while the verifier has bounded computation power but is assumed to be always honest. Messages are sent between the verifier and prover until the verifier has an answer to the problem and has "convinced" itself that it is correct.

In computational complexity theory, the time hierarchy theorems are important statements about time-bounded computation on Turing machines. Informally, these theorems say that given more time, a Turing machine can solve more problems. For example, there are problems that can be solved with n2 time but not n time.

In theoretical computer science, a probabilistic Turing machine is a non-deterministic Turing machine that chooses between the available transitions at each point according to some probability distribution. As a consequence, a probabilistic Turing machine can—unlike a deterministic Turing Machine—have stochastic results; that is, on a given input and instruction state machine, it may have different run times, or it may not halt at all; furthermore, it may accept an input in one execution and reject the same input in another execution.

Complexity class Set of problems in computational complexity theory

In computational complexity theory, a complexity class is a set of computational problems of related resource-based complexity. The two most commonly analyzed resources are time and memory.

In computational complexity theory, a probabilistically checkable proof (PCP) is a type of proof that can be checked by a randomized algorithm using a bounded amount of randomness and reading a bounded number of bits of the proof. The algorithm is then required to accept correct proofs and reject incorrect proofs with very high probability. A standard proof, as used in the verifier-based definition of the complexity class NP, also satisfies these requirements, since the checking procedure deterministically reads the whole proof, always accepts correct proofs and rejects incorrect proofs. However, what makes them interesting is the existence of probabilistically checkable proofs that can be checked by reading only a few bits of the proof using randomness in an essential way.

In computational complexity theory, DTIME is the computational resource of computation time for a deterministic Turing machine. It represents the amount of time that a "normal" physical computer would take to solve a certain computational problem using a certain algorithm. It is one of the most well-studied complexity resources, because it corresponds so closely to an important real-world resource.

In computational complexity theory, P, also known as PTIME or DTIME(nO ), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time.

In computational complexity theory, an Arthur–Merlin protocol, introduced by Babai (1985), is an interactive proof system in which the verifier's coin tosses are constrained to be public. Goldwasser & Sipser (1986) proved that all (formal) languages with interactive proofs of arbitrary length with private coins also have interactive proofs with public coins.

In computational complexity theory, the complexity class 2-EXPTIME is the set of all decision problems solvable by a deterministic Turing machine in O(22p) time, where p(n) is a polynomial function of n.

In computational complexity theory, a certificate is a string that certifies the answer to a computation, or certifies the membership of some string in a language. A certificate is often thought of as a solution path within a verification process, which is used to check whether a problem gives the answer "Yes" or "No".

In computational complexity theory, the language TQBF is a formal language consisting of the true quantified Boolean formulas. A (fully) quantified Boolean formula is a formula in quantified propositional logic where every variable is quantified, using either existential or universal quantifiers, at the beginning of the sentence. Such a formula is equivalent to either true or false. If such a formula evaluates to true, then that formula is in the language TQBF. It is also known as QSAT.

NP-completeness Complexity class

In computational complexity theory, a problem is NP-complete when:

  1. it is a problem for which the correctness of each solution can be verified quickly and a brute-force search algorithm can find a solution by trying all possible solutions.
  2. the problem can be used to simulate every other problem for which we can verify quickly that a solution is correct. In this sense, NP-complete problems are the hardest of the problems to which solutions can be verified quickly. If we could find solutions of some NP-complete problem quickly, we could quickly find the solutions of every other problem to which a given solution can be easily verified.

References

  1. Juris Hartmanis, Neil Immerman, Vivian Sewelson. Sparse Sets in NP-P: EXPTIME versus NEXPTIME. Information and Control, volume 65, issue 2/3, pp.158181. 1985. At ACM Digital Library
  2. C. Papadimitriou & M. Yannakakis, A note on succinct representations of graphs, Information and control, vol 71 num 3, décember 1986, pp. 181—185, doi : 10.1016/S0019-9958(86)80009-2
  3. C. Papadimitriou. Computational Complexity Addison-Wesley, 1994. ISBN   0-201-53082-1. Section 20.1, pg.492.