In computational complexity theory, DLOGTIME is the complexity class of all computational problems solvable in a logarithmic amount of computation time on a deterministic Turing machine. It must be defined on a random-access Turing machine, since otherwise the input tape is longer than the range of cells that can be accessed by the machine. It is a very weak model of time complexity: no random-access Turing machine with a smaller deterministic time bound can access the whole input. [1]
DLOGTIME includes problems relating to verifying the length of the input, [1] for example the problem "Is the input of even length?", which can be solved in logarithmic time using binary search.
DLOGTIME-uniformity is important in circuit complexity. [1] [2]
In computational complexity theory, bounded-error probabilistic polynomial time (BPP) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability bounded away from 1/3 for all instances. BPP is one of the largest practical classes of problems, meaning most problems of interest in BPP have efficient probabilistic algorithms that can be run quickly on real modern machines. BPP also contains P, the class of problems solvable in polynomial time with a deterministic machine, since a deterministic machine is a special case of a probabilistic machine.
Computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm.
In computational complexity theory, NP is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.
In theoretical computer science, a nondeterministic Turing machine (NTM) is a theoretical model of computation whose governing rules specify more than one possible action when in some given situations. That is, an NTM's next state is not completely determined by its action and the current symbol it sees, unlike a deterministic Turing machine.
In complexity theory and computability theory, an oracle machine is an abstract machine used to study decision problems. It can be visualized as a Turing machine with a black box, called an oracle, which is able to solve certain decision problems in a single operation. The problem can be of any complexity class. Even undecidable problems, such as the halting problem, can be used.
In theoretical computer science, a probabilistic Turing machine is a non-deterministic Turing machine that chooses between the available transitions at each point according to some probability distribution. As a consequence, a probabilistic Turing machine can—unlike a deterministic Turing Machine—have stochastic results; that is, on a given input and instruction state machine, it may have different run times, or it may not halt at all; furthermore, it may accept an input in one execution and reject the same input in another execution.
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to differ by at most a constant factor.
In computational complexity theory, a complexity class is a set of computational problems of related resource-based complexity. The two most commonly analyzed resources are time and memory.
In computational complexity theory, a probabilistically checkable proof (PCP) is a type of proof that can be checked by a randomized algorithm using a bounded amount of randomness and reading a bounded number of bits of the proof. The algorithm is then required to accept correct proofs and reject incorrect proofs with very high probability. A standard proof, as used in the verifier-based definition of the complexity class NP, also satisfies these requirements, since the checking procedure deterministically reads the whole proof, always accepts correct proofs and rejects incorrect proofs. However, what makes them interesting is the existence of probabilistically checkable proofs that can be checked by reading only a few bits of the proof using randomness in an essential way.
In computational complexity theory, P, also known as PTIME or DTIME(nO ), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time.
In computational complexity theory, the Cook–Levin theorem, also known as Cook's theorem, states that the Boolean satisfiability problem is NP-complete. That is, it is in NP, and any problem in NP can be reduced in polynomial time by a deterministic Turing machine to the Boolean satisfiability problem.
In computational complexity theory, an advice string is an extra input to a Turing machine that is allowed to depend on the length n of the input, but not on the input itself. A decision problem is in the complexity class P/f(n) if there is a polynomial time Turing machine M with the following property: for any n, there is an advice string A of length f(n) such that, for any input x of length n, the machine M correctly decides the problem on the input x, given x and A.
In computational complexity theory, NL is the complexity class containing decision problems which can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space.
In computational complexity theory, L is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way.
In computational complexity theory, SL is the complexity class of problems log-space reducible to USTCON, which is the problem of determining whether there exists a path between two vertices in an undirected graph, otherwise described as the problem of determining whether two vertices are in the same connected component. This problem is also called the undirected reachability problem. It does not matter whether many-one reducibility or Turing reducibility is used. Although originally described in terms of symmetric Turing machines, that equivalent formulation is very complex, and the reducibility definition is what is used in practice.
Randomized Logarithmic-space (RL), sometimes called RLP, is the complexity class of computational complexity theory problems solvable in logarithmic space and polynomial time with probabilistic Turing machines with one-sided error. It is named in analogy with RP, which is similar but has no logarithmic space restriction.
In computational complexity theory, the Immerman–Szelepcsényi theorem states that nondeterministic space complexity classes are closed under complementation. It was proven independently by Neil Immerman and Róbert Szelepcsényi in 1987, for which they shared the 1995 Gödel Prize. In its general form the theorem states that NSPACE(s ) = co-NSPACE(s ) for any function s(n) ≥ log n. The result is equivalently stated as NL = co-NL; although this is the special case when s(n) = log n, it implies the general theorem by a standard padding argument. The result solved the second LBA problem.
In computational complexity theory, NL-complete is a complexity class containing the languages that are complete for NL, the class of decision problems that can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space. The NL-complete languages are the most "difficult" or "expressive" problems in NL. If a method exists for solving any one of the NL-complete problems in logarithmic memory space, then NL = L.
In computational complexity theory, L/poly is the complexity class of logarithmic space machines with a polynomial amount of advice. L/poly is a non-uniform logarithmic space class, analogous to the non-uniform polynomial time class P/poly.
In computational complexity theory, a problem is NP-complete when: