Generative audio

Last updated
Audio curves Audio curves graph.png
Audio curves

Generative audio refers to the creation of audio files from databases of audio clips.[ citation needed ] This technology differs from synthesized voices such as Apple's Siri or Amazon's Alexa, which use a collection of fragments that are stitched together on demand.

Contents

Generative audio works by using neural networks to learn the statistical properties of an audio source, then reproduces those properties. [1]

Implications

With this technology, a person's voice can be replicated to speak phrases that they may have never spoken. This could lead to a synthetic version of a public figure's voice being used against them. [2]

Technology

Modern generative audio systems employ various deep learning architectures. One notable approach uses generative adversarial networks (GANs), where two machine learning models work against each other to create realistic audio. Other architectures include WaveNet, which uses dilated causal convolutions to model raw audio waveforms, and implementations like 15.ai, which demonstrated in 2020 the ability to clone voices using as little as 15 seconds of training data through specialized neural network architectures. [3] [4]

See also

Related Research Articles

<span class="mw-page-title-main">Neural network (machine learning)</span> Computational model used in machine learning, based on connected, hierarchical functions

In machine learning, a neural network is a model inspired by the structure and function of biological neural networks in animal brains.

Speech processing is the study of speech signals and the processing methods of signals. The signals are usually processed in a digital representation, so speech processing can be regarded as a special case of digital signal processing, applied to speech signals. Aspects of speech processing includes the acquisition, manipulation, storage, transfer and output of speech signals. Different speech processing tasks include speech recognition, speech synthesis, speaker diarization, speech enhancement, speaker recognition, etc.

Speech recognition is an interdisciplinary subfield of computer science and computational linguistics that develops methodologies and technologies that enable the recognition and translation of spoken language into text by computers. It is also known as automatic speech recognition (ASR), computer speech recognition or speech-to-text (STT). It incorporates knowledge and research in the computer science, linguistics and computer engineering fields. The reverse process is speech synthesis.

<span class="mw-page-title-main">Jürgen Schmidhuber</span> German computer scientist

Jürgen Schmidhuber is a German computer scientist noted for his work in the field of artificial intelligence, specifically artificial neural networks. He is a scientific director of the Dalle Molle Institute for Artificial Intelligence Research in Switzerland. He is also director of the Artificial Intelligence Initiative and professor of the Computer Science program in the Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) division at the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia.

<span class="mw-page-title-main">Human image synthesis</span> Computer generation of human images

Human image synthesis is technology that can be applied to make believable and even photorealistic renditions of human-likenesses, moving or still. It has effectively existed since the early 2000s. Many films using computer generated imagery have featured synthetic images of human-like characters digitally composited onto the real or other simulated film material. Towards the end of the 2010s deep learning artificial intelligence has been applied to synthesize images and video that look like humans, without need for human assistance, once the training phase has been completed, whereas the old school 7D-route required massive amounts of human work .

<span class="mw-page-title-main">Long short-term memory</span> Type of recurrent neural network architecture

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models, and other sequence learning methods. It aims to provide a short-term memory for RNN that can last thousands of timesteps. The name is made in analogy with long-term memory and short-term memory and their relationship, studied by cognitive psychologists since the early 20th century.

Music and artificial intelligence is the development of music software programs which use AI to generate music. As with applications in other fields, AI in music also simulates mental tasks. A prominent feature is the capability of an AI algorithm to learn based on past data, such as in computer accompaniment technology, wherein the AI is capable of listening to a human performer and performing accompaniment. Artificial intelligence also drives interactive composition technology, wherein a computer composes music in response to a live performance. There are other AI applications in music that cover not only music composition, production, and performance but also how music is marketed and consumed. Several music player programs have also been developed to use voice recognition and natural language processing technology for music voice control. Current research includes the application of AI in music composition, performance, theory and digital sound processing.

<span class="mw-page-title-main">Deep learning</span> Branch of machine learning

Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data. The adjective "deep" refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.

<span class="mw-page-title-main">Feature learning</span> Set of learning techniques in machine learning

In machine learning (ML), feature learning or representation learning is a set of techniques that allow a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.

DeepMind Technologies Limited, trading as Google DeepMind or simply DeepMind, is a British-American artificial intelligence research laboratory which serves as a subsidiary of Alphabet Inc.. Founded in the UK in 2010, it was acquired by Google in 2014 and merged with Google AI's Google Brain division to become Google DeepMind in April 2023. The company is based in London, with research centres in Canada, France, Germany, and the United States.

Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video. This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, text-to-image generation, aesthetic ranking, and image captioning.

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence (AI), its subdisciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

WaveNet is a deep neural network for generating raw audio. It was created by researchers at London-based AI firm DeepMind. The technique, outlined in a paper in September 2016, is able to generate relatively realistic-sounding human-like voices by directly modelling waveforms using a neural network method trained with recordings of real speech. Tests with US English and Mandarin reportedly showed that the system outperforms Google's best existing text-to-speech (TTS) systems, although as of 2016 its text-to-speech synthesis still was less convincing than actual human speech. WaveNet's ability to generate raw waveforms means that it can model any kind of audio, including music.

Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks. Their creation was inspired by biological neural circuitry. While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. Little research was conducted on ANNs in the 1970s and 1980s, with the AAAI calling this period an "AI winter".

Synthetic media is a catch-all term for the artificial production, manipulation, and modification of data and media by automated means, especially through the use of artificial intelligence algorithms, such as for the purpose of misleading people or changing an original meaning. Synthetic media as a field has grown rapidly since the creation of generative adversarial networks, primarily through the rise of deepfakes as well as music synthesis, text generation, human image synthesis, speech synthesis, and more. Though experts use the term "synthetic media," individual methods such as deepfakes and text synthesis are sometimes not referred to as such by the media but instead by their respective terminology Significant attention arose towards the field of synthetic media starting in 2017 when Motherboard reported on the emergence of AI altered pornographic videos to insert the faces of famous actresses. Potential hazards of synthetic media include the spread of misinformation, further loss of trust in institutions such as media and government, the mass automation of creative and journalistic jobs and a retreat into AI-generated fantasy worlds. Synthetic media is an applied form of artificial imagination.

Audio deepfake technology, also referred to as voice cloning or deepfake audio, is an application of artificial intelligence designed to generate speech that convincingly mimics specific individuals, often synthesizing phrases or sentences they have never spoken. Initially developed with the intent to enhance various aspects of human life, it has practical applications such as generating audiobooks and assisting individuals who have lost their voices due to medical conditions. Additionally, it has commercial uses, including the creation of personalized digital assistants, natural-sounding text-to-speech systems, and advanced speech translation services.

Deep learning speech synthesis refers to the application of deep learning models to generate natural-sounding human speech from written text (text-to-speech) or spectrum (vocoder). Deep neural networks are trained using large amounts of recorded speech and, in the case of a text-to-speech system, the associated labels and/or input text.

Lyra is a lossy audio codec developed by Google that is designed for compressing speech at very low bitrates. Unlike most other audio formats, it compresses data using a machine learning-based algorithm.

15.ai was a free non-commercial web application that used artificial intelligence to generate text-to-speech voices of fictional characters from popular media. Created by an artificial intelligence researcher known as 15 during their time at the Massachusetts Institute of Technology, the application allowed users to make characters from various media speak custom text with emotional inflections faster than real-time. It was an early example of an application of generative artificial intelligence during the initial stages of the AI boom.

References

  1. "Fake news: you ain't seen nothing yet". The Economist. July 2017. Retrieved 2017-07-01.
  2. Zotkin, D. N.; Shamma, S. A.; Ru, P.; Duraiswami, R.; Davis, L. S. (April 2003). "Pitch and timbre manipulations using cortical representation of sound". 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). Vol. 5. pp. V–517–20. doi:10.1109/ICASSP.2003.1200020. ISBN   978-0-7803-7663-2. S2CID   10372569.
  3. Chandraseta, Rionaldi (January 21, 2021). "Generate Your Favourite Characters' Voice Lines using Machine Learning". Towards Data Science. Archived from the original on January 21, 2021. Retrieved December 18, 2024.
  4. Temitope, Yusuf (December 10, 2024). "15.ai Creator reveals journey from MIT Project to internet phenomenon". The Guardian . Archived from the original on December 28, 2024. Retrieved December 25, 2024.