Trial and error

Last updated

Trial and error is a fundamental method of problem-solving. [1] It is characterized by repeated, varied attempts which are continued until success, [2] or until the practicer stops trying.

Contents

According to W.H. Thorpe, the term was devised by C. Lloyd Morgan (1852–1936) after trying out similar phrases "trial and failure" and "trial and practice". [3] Under Morgan's Canon, animal behaviour should be explained in the simplest possible way. Where behavior seems to imply higher mental processes, it might be explained by trial-and-error learning. An example is a skillful way in which his terrier Tony opened the garden gate, easily misunderstood as an insightful act by someone seeing the final behavior. Lloyd Morgan, however, had watched and recorded the series of approximations by which the dog had gradually learned the response, and could demonstrate that no insight was required to explain it.

Edward Lee Thorndike was the initiator of the theory of trial and error learning based on the findings he showed how to manage a trial-and-error experiment in the laboratory. In his famous experiment, a cat was placed in a series of puzzle boxes in order to study the law of effect in learning. [4] He plotted to learn curves which recorded the timing for each trial. Thorndike's key observation was that learning was promoted by positive results, which was later refined and extended by B. F. Skinner's operant conditioning.

Trial and error is also a method of problem solving, repair, tuning, or obtaining knowledge. In the field of computer science, the method is called generate and test (Brute force). In elementary algebra, when solving equations, it is guess and check.

This approach can be seen as one of the two basic approaches to problem-solving, contrasted with an approach using insight and theory. However, there are intermediate methods which for example, use theory to guide the method, an approach known as guided empiricism.

This way of thinking has become a mainstay of Karl Popper's falsificationist methodology in philosophy of science.

Methodology

The trial and error approach is used most successfully with simple problems and in games, and it is often the last resort when no apparent rule applies. This does not mean that the approach is inherently careless, for an individual can be methodical in manipulating the variables in an attempt to sort through possibilities that could result in success. Nevertheless, this method is often used by people who have little knowledge in the problem area. The trial-and-error approach has been studied from its natural computational point of view [5]

Simplest applications

Ashby (1960, section 11/5) offers three simple strategies for dealing with the same basic exercise-problem, which have very different efficiencies. Suppose a collection of 1000 on/off switches have to be set to a particular combination by random-based testing, where each test is expected to take one second. [This is also discussed in Traill (1978/2006, section C1.2]. The strategies are:

Note the tacit assumption here that no intelligence or insight is brought to bear on the problem. However, the existence of different available strategies allows us to consider a separate ("superior") domain of processing — a "meta-level" above the mechanics of switch handling — where the various available strategies can be randomly chosen. Once again this is "trial and error", but of a different type.

Hierarchies

Ashby's book develops this "meta-level" idea, and extends it into a whole recursive sequence of levels, successively above each other in a systematic hierarchy. On this basis, he argues that human intelligence emerges from such organization: relying heavily on trial-and-error (at least initially at each new stage), but emerging with what we would call "intelligence" at the end of it all. Thus presumably the topmost level of the hierarchy (at any stage) will still depend on simple trial-and-error.

Traill (1978/2006) suggests that this Ashby-hierarchy probably coincides with Piaget's well-known theory of developmental stages. [This work also discusses Ashby's 1000-switch example; see §C1.2]. After all, it is part of Piagetian doctrine that children learn first by actively doing in a more-or-less random way, and then hopefully learn from the consequences — which all has a certain resemblance to Ashby's random "trial-and-error".

Application

Traill (2008, espec. Table "S" on p.31) follows Jerne and Popper in seeing this strategy as probably underlying all knowledge-gathering systems — at least in their initial phase.

Four such systems are identified:

Features

Trial and error has a number of features:

It is possible to use trial and error to find all solutions or the best solution, when a testably finite number of possible solutions exist. To find all solutions, one simply makes a note and continues, rather than ending the process, when a solution is found, until all solutions have been tried. To find the best solution, one finds all solutions by the method just described and then comparatively evaluates them based upon some predefined set of criteria, the existence of which is a condition for the possibility of finding a best solution. (Also, when only one solution can exist, as in assembling a jigsaw puzzle, then any solution found is the only solution and so is necessarily the best.)

Examples

Trial and error has traditionally been the main method of finding new drugs, such as antibiotics. Chemists simply try chemicals at random until they find one with the desired effect. In a more sophisticated version, chemists select a narrow range of chemicals it is thought may have some effect using a technique called structure–activity relationship. (The latter case can be alternatively considered as a changing of the problem rather than of the solution strategy: instead of "What chemical will work well as an antibiotic?" the problem in the sophisticated approach is "Which, if any, of the chemicals in this narrow range will work well as an antibiotic?") The method is used widely in many disciplines, such as polymer technology to find new polymer types or families.

Trial and error is also commonly seen in player responses to video games - when faced with an obstacle or boss, players often form a number of strategies to surpass the obstacle or defeat the boss, with each strategy being carried out before the player either succeeds or quits the game.

Sports teams also make use of trial and error to qualify for and/or progress through the playoffs and win the championship, attempting different strategies, plays, lineups and formations in hopes of defeating each and every opponent along the way to victory. This is especially crucial in playoff series in which multiple wins are required to advance, where a team that loses a game will have the opportunity to try new tactics to find a way to win, if they are not eliminated yet.

The scientific method can be regarded as containing an element of trial and error in its formulation and testing of hypotheses. Also compare genetic algorithms, simulated annealing and reinforcement learning – all varieties for search which apply the basic idea of trial and error.

Biological evolution can be considered as a form of trial and error. [6] Random mutations and sexual genetic variations can be viewed as trials and poor reproductive fitness, or lack of improved fitness, as the error. Thus after a long time 'knowledge' of well-adapted genomes accumulates simply by virtue of them being able to reproduce.

Bogosort, a conceptual sorting algorithm (that is extremely inefficient and impractical), can be viewed as a trial and error approach to sorting a list. However, typical simple examples of bogosort do not track which orders of the list have been tried and may try the same order any number of times, which violates one of the basic principles of trial and error. Trial and error is actually more efficient and practical than bogosort; unlike bogosort, it is guaranteed to halt in finite time on a finite list, and might even be a reasonable way to sort extremely short lists under some conditions.

Jumping spiders of the genus Portia use trial and error to find new tactics against unfamiliar prey or in unusual situations, and remember the new tactics. [7] Tests show that Portia fimbriata and Portia labiata can use trial and error in an artificial environment, where the spider's objective is to cross a miniature lagoon that is too wide for a simple jump, and must either jump then swim or only swim. [8] [9]

See also

Related Research Articles

Educational psychology is the branch of psychology concerned with the scientific study of human learning. The study of learning processes, from both cognitive and behavioral perspectives, allows researchers to understand individual differences in intelligence, cognitive development, affect, motivation, self-regulation, and self-concept, as well as their role in learning. The field of educational psychology relies heavily on quantitative methods, including testing and measurement, to enhance educational activities related to instructional design, classroom management, and assessment, which serve to facilitate learning processes in various educational settings across the lifespan.

Genetic algorithm Competitive algorithm for searching a problem space

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection.

Categorization is the human ability and activity of recognizing shared features or similarities between the elements of the experience of the world, organizing and classifying experience by associating them to a more abstract group, on the basis of their traits, features, similarities or other criteria. Categorization is considered one of the most fundamental cognitive abilities, and as such it is studied particularly by psychology and cognitive linguistics.

Least squares Approximation method in statistics

The method of least squares is a standard approach in regression analysis to approximate the solution of overdetermined systems by minimizing the sum of the squares of the residuals made in the results of every single equation.

Edward Thorndike American psychologist

Edward Lee Thorndike was an American psychologist who spent nearly his entire career at Teachers College, Columbia University. His work on comparative psychology and the learning process led to the theory of connectionism and helped lay the scientific foundation for educational psychology. He also worked on solving industrial problems, such as employee exams and testing. He was a member of the board of the Psychological Corporation and served as president of the American Psychological Association in 1912. A Review of General Psychology survey, published in 2002, ranked Thorndike as the ninth-most cited psychologist of the 20th century. Edward Thorndike had a powerful impact on reinforcement theory and behavior analysis, providing the basic framework for empirical laws in behavior psychology with his law of effect. Through his contributions to the behavioral psychology field came his major impacts on education, where the law of effect has great influence in the classroom.

In computer science, brute-force search or exhaustive search, also known as generate and test, is a very general problem-solving technique and algorithmic paradigm that consists of systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the problem's statement.

Case-based reasoning (CBR), broadly construed, is the process of solving new problems based on the solutions of similar past problems. An auto mechanic who fixes an engine by recalling another car that exhibited similar symptoms is using case-based reasoning. A lawyer who advocates a particular outcome in a trial based on legal precedents or a judge who creates case law is using case-based reasoning. So, too, an engineer copying working elements of nature, is treating nature as a database of solutions to problems. Case-based reasoning is a prominent type of analogy solution making.

Problem-based learning learner centric pedagogy

Problem-based learning (PBL) is a student-centered pedagogy in which students learn about a subject through the experience of solving an open-ended problem found in trigger material. The PBL process does not focus on problem solving with a defined solution, but it allows for the development of other desirable skills and attributes. This includes knowledge acquisition, enhanced group collaboration and communication. The PBL process was developed for medical education and has since been broadened in applications for other programs of learning. The process allows for learners to develop skills used for their future practice. It enhances critical appraisal, literature retrieval and encourages ongoing learning within a team environment.

A cognitive tutor is a particular kind of intelligent tutoring system that utilizes a cognitive model to provide feedback to students as they are working through problems. This feedback will immediately inform students of the correctness, or incorrectness, of their actions in the tutor interface; however, cognitive tutors also have the ability to provide context-sensitive hints and instruction to guide students towards reasonable next steps.

In planning and policy, a wicked problem is a problem that is difficult or impossible to solve because of incomplete, contradictory, and changing requirements that are often difficult to recognize. It refers to an idea or problem that cannot be fixed, where there is no single solution to the problem; and "wicked" denotes resistance to resolution, rather than evil. Another definition is "a problem whose social complexity means that it has no determinable stopping point". Moreover, because of complex interdependencies, the effort to solve one aspect of a wicked problem may reveal or create other problems.

Problem solving consists of using generic or ad hoc methods in an orderly manner to find solutions to problems. Some of the problem-solving techniques developed and used in philosophy, artificial intelligence, computer science, engineering, mathematics, medicine and societies in general are related to mental problem-solving techniques studied in psychology and cognitive sciences.

<i>Portia</i> (spider) Genus of spiders

Portia is a genus of jumping spider that feeds on other spiders. They are remarkable for their intelligent hunting behaviour, which suggests that they are capable of learning and problem solving, traits normally attributed to much larger animals.

Transfer of learning occurs when people apply information, strategies, and skills they have learned to a new situation or context. Transfer is not a discrete activity, but is rather an integral part of the learning process. Researchers attempt to identify when and how transfer occurs and to offer strategies to improve transfer.

Ariadne's thread, named for the legend of Ariadne, is solving a problem by multiple means—such as a physical maze, a logic puzzle, or an ethical dilemma—through an exhaustive application of logic to all available routes. It is the particular method used that is able to follow completely through to trace steps or take point by point a series of found truths in a contingent, ordered search that reaches an end position. This process can take the form of a mental record, a physical marking, or even a philosophical debate; it is the process itself that assumes the name.

<i>Portia labiata</i> Species of spider

Portia labiata is a jumping spider found in Sri Lanka, India, southern China, Burma (Myanmar), Malaysia, Singapore, Java, Sumatra and the Philippines. In this medium-sized jumping spider, the front part is orange-brown and the back part is brownish. The conspicuous main eyes provide vision more acute than a cat's during the day and 10 times more acute than a dragonfly's, and this is essential in P. labiata′s navigation, hunting and mating.

Outline of thought Overview of and topical guide to thought

The following outline is provided as an overview of and topical guide to thought (thinking):

Stochastic optimization (SO) methods are optimization methods that generate and use random variables. For stochastic problems, the random variables appear in the formulation of the optimization problem itself, which involves random objective functions or random constraints. Stochastic optimization methods also include methods with random iterates. Some stochastic optimization methods use random iterates to solve stochastic problems, combining both meanings of stochastic optimization. Stochastic optimization methods generalize deterministic methods for deterministic problems.

In software engineering, graphical user interface testing is the process of testing a product's graphical user interface (GUI) to ensure it meets its specifications. This is normally done through the use of a variety of test cases.

<i>Portia fimbriata</i> Species of spider

Portia fimbriata, sometimes called the fringed jumping spider, is a jumping spider found in Australia and Southeast Asia. Adult females have bodies 6.8 to 10.5 millimetres long, while those of adult males are 5.2 to 6.5 millimetres long. Both sexes have a generally dark brown carapace, reddish brown chelicerae ("fangs"), a brown underside, dark brown palps with white hairs, and dark brown abdomens with white spots on the upper side. Both sexes have fine, faint markings and soft fringes of hair, and the legs are spindly and fringed. However, specimens from New Guinea and Indonesia have orange-brown carapaces and yellowish abdomens. In all species of the genus Portia, the abdomen distends when the spider is well fed or producing eggs.

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

References

  1. Campbell, Donald T. (November 1960). "Blind variation and selective retention in creative thoughts as in other knowledge processes". Psychological Review. 67 (6): 380–400. doi:10.1037/h0040373.
  2. Concise Oxford Dictionary p1489
  3. Thorpe W.H. The origins and rise of ethology. Hutchinson, London & Praeger, New York. p26. ISBN   978-0-03-053251-1
  4. Thorndike E.L. 1898. Animal intelligence: an experimental study of the association processes in animals. Psychological Monographs #8.
  5. X. Bei, N. Chen, S. Zhang, On the Complexity of Trial and Error, STOC 2013
  6. Wright, Serwall (1932). "The roles of mutation, inbreeding, crossbreeding and selection in evolution" (PDF). Proceedings of the Sixth International Congress on Genetics. Volume 1. Number 6: 365. Retrieved 17 March 2014.
  7. Harland, D.P. & Jackson, R.R. (2000). ""Eight-legged cats" and how they see - a review of recent research on jumping spiders (Araneae: Salticidae)" (PDF). Cimbebasia. 16: 231–240. Archived from the original (PDF) on 28 September 2006. Retrieved 5 May 2011.
  8. Jackson, Robert R.; Fiona R. Cross; Chris M. Carter (2006). "Geographic Variation in a Spider's Ability to Solve a Confinement Problem by Trial and Error". International Journal of Comparative Psychology. 19: 282–296. Retrieved 8 June 2011.
  9. Jackson, Robert R.; Chris M. Carter; Michael S. Tarsitano (2001). "Trial-and-error solving of a confinement problem by a jumping spider, Portia fimbriata". Behaviour. Leiden: Koninklijke Brill. 138 (10): 1215–1234. doi:10.1163/15685390152822184. ISSN   0005-7959. JSTOR   4535886.

Further reading