Reinforcement learning

Last updated
The typical framing of a Reinforcement Learning (RL) scenario: an agent takes actions in an environment, which is interpreted into a reward and a state representation, which are fed back to the agent. Reinforcement learning diagram.svg
The typical framing of a Reinforcement Learning (RL) scenario: an agent takes actions in an environment, which is interpreted into a reward and a state representation, which are fed back to the agent.

Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised learning.

Contents

Q-learning at its simplest stores data in tables. This approach becomes infeasible as the number of states/actions increases (e.g., if the state space or action space were continuous), as the probability of the agent visiting a particular state and performing a particular action diminishes.

Reinforcement learning differs from supervised learning in not needing labelled input-output pairs to be presented, and in not needing sub-optimal actions to be explicitly corrected. Instead, the focus is on finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge) with the goal of maximizing the cumulative reward (the feedback of which might be incomplete or delayed). [1] The search for this balance is known as the exploration-exploitation dilemma.

The environment is typically stated in the form of a Markov decision process (MDP), as many reinforcement learning algorithms use dynamic programming techniques. [2] The main difference between classical dynamic programming methods and reinforcement learning algorithms is that the latter do not assume knowledge of an exact mathematical model of the Markov decision process, and they target large MDPs where exact methods become infeasible. [3]

Principles

Due to its generality, reinforcement learning is studied in many disciplines, such as game theory, control theory, operations research, information theory, simulation-based optimization, multi-agent systems, swarm intelligence, and statistics. In the operations research and control literature, RL is called approximate dynamic programming, or neuro-dynamic programming. The problems of interest in RL have also been studied in the theory of optimal control, which is concerned mostly with the existence and characterization of optimal solutions, and algorithms for their exact computation, and less with learning or approximation (particularly in the absence of a mathematical model of the environment).

Basic reinforcement learning is modeled as a Markov decision process:

The purpose of reinforcement learning is for the agent to learn an optimal (or near-optimal) policy that maximizes the reward function or other user-provided reinforcement signal that accumulates from immediate rewards. This is similar to processes that appear to occur in animal psychology. For example, biological brains are hardwired to interpret signals such as pain and hunger as negative reinforcements, and interpret pleasure and food intake as positive reinforcements. In some circumstances, animals learn to adopt behaviors that optimize these rewards. This suggests that animals are capable of reinforcement learning. [4] [5]

A basic reinforcement learning agent interacts with its environment in discrete time steps. At each time step t, the agent receives the current state and reward . It then chooses an action from the set of available actions, which is subsequently sent to the environment. The environment moves to a new state and the reward associated with the transition is determined. The goal of a reinforcement learning agent is to learn a policy:

,

that maximizes the expected cumulative reward.

Formulating the problem as a Markov decision process assumes the agent directly observes the current environmental state; in this case, the problem is said to have full observability. If the agent only has access to a subset of states, or if the observed states are corrupted by noise, the agent is said to have partial observability, and formally the problem must be formulated as a partially observable Markov decision process. In both cases, the set of actions available to the agent can be restricted. For example, the state of an account balance could be restricted to be positive; if the current value of the state is 3 and the state transition attempts to reduce the value by 4, the transition will not be allowed.

When the agent's performance is compared to that of an agent that acts optimally, the difference in performance yields the notion of regret. In order to act near optimally, the agent must reason about long-term consequences of its actions (i.e., maximize future rewards), although the immediate reward associated with this might be negative.

Thus, reinforcement learning is particularly well-suited to problems that include a long-term versus short-term reward trade-off. It has been applied successfully to various problems, including energy storage, [6] robot control, [7] photovoltaic generators, [8] backgammon, checkers, [9] Go (AlphaGo), and autonomous driving systems. [10]

Two elements make reinforcement learning powerful: the use of samples to optimize performance, and the use of function approximation to deal with large environments. Thanks to these two key components, RL can be used in large environments in the following situations:

The first two of these problems could be considered planning problems (since some form of model is available), while the last one could be considered to be a genuine learning problem. However, reinforcement learning converts both planning problems to machine learning problems.

Exploration

The exploration vs. exploitation trade-off has been most thoroughly studied through the multi-armed bandit problem and for finite state space Markov decision processes in Burnetas and Katehakis (1997). [12]

Reinforcement learning requires clever exploration mechanisms; randomly selecting actions, without reference to an estimated probability distribution, shows poor performance. The case of (small) finite Markov decision processes is relatively well understood. However, due to the lack of algorithms that scale well with the number of states (or scale to problems with infinite state spaces), simple exploration methods are the most practical.

One such method is -greedy, where is a parameter controlling the amount of exploration vs. exploitation. With probability , exploitation is chosen, and the agent chooses the action that it believes has the best long-term effect (ties between actions are broken uniformly at random). Alternatively, with probability , exploration is chosen, and the action is chosen uniformly at random. is usually a fixed parameter but can be adjusted either according to a schedule (making the agent explore progressively less), or adaptively based on heuristics. [13]

Algorithms for control learning

Even if the issue of exploration is disregarded and even if the state was observable (assumed hereafter), the problem remains to use past experience to find out which actions lead to higher cumulative rewards.

Criterion of optimality

Policy

The agent's action selection is modeled as a map called policy:

The policy map gives the probability of taking action when in state . [14] :61 There are also deterministic policies.

State-value function

The state-value function is defined as, expected discounted return starting with state , i.e. , and successively following policy . Hence, roughly speaking, the value function estimates "how good" it is to be in a given state. [14] :60

where the random variable denotes the discounted return, and is defined as the sum of future discounted rewards:

where is the reward for transitioning from state to , is the discount rate. is less than 1, so rewards in the distant future are weighted less than rewards in the immediate future.

The algorithm must find a policy with maximum expected discounted return. From the theory of Markov decision processes it is known that, without loss of generality, the search can be restricted to the set of so-called stationary policies. A policy is stationary if the action-distribution returned by it depends only on the last state visited (from the observation agent's history). The search can be further restricted to deterministic stationary policies. A deterministic stationary policy deterministically selects actions based on the current state. Since any such policy can be identified with a mapping from the set of states to the set of actions, these policies can be identified with such mappings with no loss of generality.

Brute force

The brute force approach entails two steps:

One problem with this is that the number of policies can be large, or even infinite. Another is that the variance of the returns may be large, which requires many samples to accurately estimate the discounted return of each policy.

These problems can be ameliorated if we assume some structure and allow samples generated from one policy to influence the estimates made for others. The two main approaches for achieving this are value function estimation and direct policy search.

Value function

Value function approaches attempt to find a policy that maximizes the discounted return by maintaining a set of estimates of expected discounted returns for some policy (usually either the "current" [on-policy] or the optimal [off-policy] one).

These methods rely on the theory of Markov decision processes, where optimality is defined in a sense stronger than the one above: A policy is optimal if it achieves the best-expected discounted return from any initial state (i.e., initial distributions play no role in this definition). Again, an optimal policy can always be found among stationary policies.

To define optimality in a formal manner, define the state-value of a policy by

where stands for the discounted return associated with following from the initial state . Defining as the maximum possible state-value of , where is allowed to change,

A policy that achieves these optimal state-values in each state is called optimal. Clearly, a policy that is optimal in this sense is also optimal in the sense that it maximizes the expected discounted return, since , where is a state randomly sampled from the distribution of initial states (so ).

Although state-values suffice to define optimality, it is useful to define action-values. Given a state , an action and a policy , the action-value of the pair under is defined by

where now stands for the random discounted return associated with first taking action in state and following , thereafter.

The theory of Markov decision processes states that if is an optimal policy, we act optimally (take the optimal action) by choosing the action from with the highest action-value at each state, . The action-value function of such an optimal policy () is called the optimal action-value function and is commonly denoted by . In summary, the knowledge of the optimal action-value function alone suffices to know how to act optimally.

Assuming full knowledge of the Markov decision process, the two basic approaches to compute the optimal action-value function are value iteration and policy iteration. Both algorithms compute a sequence of functions () that converge to . Computing these functions involves computing expectations over the whole state-space, which is impractical for all but the smallest (finite) Markov decision processes. In reinforcement learning methods, expectations are approximated by averaging over samples and using function approximation techniques to cope with the need to represent value functions over large state-action spaces.

Monte Carlo methods

Monte Carlo methods [15] are used to solve reinforcement learning problems by averaging sample returns. Unlike methods that require full knowledge of the environment’s dynamics, Monte Carlo methods rely solely on actual or simulated experience—sequences of states, actions, and rewards obtained from interaction with an environment. This makes them applicable in situations where the complete dynamics are unknown. Learning from actual experience does not require prior knowledge of the environment and can still lead to optimal behavior. When using simulated experience, only a model capable of generating sample transitions is required, rather than a full specification of transition probabilities, which is necessary for dynamic programming methods.

Monte Carlo methods apply to episodic tasks, where experience is divided into episodes that eventually terminate. Policy and value function updates occur only after the completion of an episode, making these methods incremental on an episode-by-episode basis, though not on a step-by-step (online) basis. The term "Monte Carlo" generally refers to any method involving random sampling; however, in this context, it specifically refers to methods that compute averages from complete returns, rather than partial returns.

These methods function similarly to the bandit algorithms, in which returns are averaged for each state-action pair. The key difference is that actions taken in one state affect the returns of subsequent states within the same episode, making the problem non-stationary. To address this non-stationarity, Monte Carlo methods use the framework of general policy iteration (GPI). While dynamic programming computes value functions using full knowledge of the Markov decision process (MDP), Monte Carlo methods learn these functions through sample returns. The value functions and policies interact similarly to dynamic programming to achieve optimality, first addressing the prediction problem and then extending to policy improvement and control, all based on sampled experience. [14]

Temporal difference methods

The first problem is corrected by allowing the procedure to change the policy (at some or all states) before the values settle. This too may be problematic as it might prevent convergence. Most current algorithms do this, giving rise to the class of generalized policy iteration algorithms. Many actor-critic methods belong to this category.

The second issue can be corrected by allowing trajectories to contribute to any state-action pair in them. This may also help to some extent with the third problem, although a better solution when returns have high variance is Sutton's temporal difference (TD) methods that are based on the recursive Bellman equation. [16] [17] The computation in TD methods can be incremental (when after each transition the memory is changed and the transition is thrown away), or batch (when the transitions are batched and the estimates are computed once based on the batch). Batch methods, such as the least-squares temporal difference method, [18] may use the information in the samples better, while incremental methods are the only choice when batch methods are infeasible due to their high computational or memory complexity. Some methods try to combine the two approaches. Methods based on temporal differences also overcome the fourth issue.

Another problem specific to TD comes from their reliance on the recursive Bellman equation. Most TD methods have a so-called parameter that can continuously interpolate between Monte Carlo methods that do not rely on the Bellman equations and the basic TD methods that rely entirely on the Bellman equations. This can be effective in palliating this issue.

Function approximation methods

In order to address the fifth issue, function approximation methods are used. Linear function approximation starts with a mapping that assigns a finite-dimensional vector to each state-action pair. Then, the action values of a state-action pair are obtained by linearly combining the components of with some weights:

The algorithms then adjust the weights, instead of adjusting the values associated with the individual state-action pairs. Methods based on ideas from nonparametric statistics (which can be seen to construct their own features) have been explored.

Value iteration can also be used as a starting point, giving rise to the Q-learning algorithm and its many variants. [19] Including Deep Q-learning methods when a neural network is used to represent Q, with various applications in stochastic search problems. [20]

The problem with using action-values is that they may need highly precise estimates of the competing action values that can be hard to obtain when the returns are noisy, though this problem is mitigated to some extent by temporal difference methods. Using the so-called compatible function approximation method compromises generality and efficiency.

An alternative method is to search directly in (some subset of) the policy space, in which case the problem becomes a case of stochastic optimization. The two approaches available are gradient-based and gradient-free methods.

Gradient-based methods (policy gradient methods) start with a mapping from a finite-dimensional (parameter) space to the space of policies: given the parameter vector , let denote the policy associated to . Defining the performance function by under mild conditions this function will be differentiable as a function of the parameter vector . If the gradient of was known, one could use gradient ascent. Since an analytic expression for the gradient is not available, only a noisy estimate is available. Such an estimate can be constructed in many ways, giving rise to algorithms such as Williams' REINFORCE method [21] (which is known as the likelihood ratio method in the simulation-based optimization literature). [22]

A large class of methods avoids relying on gradient information. These include simulated annealing, cross-entropy search or methods of evolutionary computation. Many gradient-free methods can achieve (in theory and in the limit) a global optimum.

Policy search methods may converge slowly given noisy data. For example, this happens in episodic problems when the trajectories are long and the variance of the returns is large. Value-function based methods that rely on temporal differences might help in this case. In recent years, actor–critic methods have been proposed and performed well on various problems. [23]

Policy search methods have been used in the robotics context. [24] Many policy search methods may get stuck in local optima (as they are based on local search).

Model-based algorithms

Finally, all of the above methods can be combined with algorithms that first learn a model of the Markov Decision Process, the probability of each next state given an action taken from an existing state. For instance, the Dyna algorithm [25] learns a model from experience, and uses that to provide more modelled transitions for a value function, in addition to the real transitions. Such methods can sometimes be extended to use of non-parametric models, such as when the transitions are simply stored and 'replayed' [26] to the learning algorithm.

Model-based methods can be more computationally intensive than model-free approaches, and their utility can be limited by the extent to which the Markov Decision Process can be learnt. [27]

There are other ways to use models than to update a value function. [28] For instance, in model predictive control the model is used to update the behavior directly.

Theory

Both the asymptotic and finite-sample behaviors of most algorithms are well understood. Algorithms with provably good online performance (addressing the exploration issue) are known.

Efficient exploration of Markov decision processes is given in Burnetas and Katehakis (1997). [12] Finite-time performance bounds have also appeared for many algorithms, but these bounds are expected to be rather loose and thus more work is needed to better understand the relative advantages and limitations.

For incremental algorithms, asymptotic convergence issues have been settled[ clarification needed ]. Temporal-difference-based algorithms converge under a wider set of conditions than was previously possible (for example, when used with arbitrary, smooth function approximation).

Research

Research topics include:

Comparison of key algorithms

AlgorithmDescriptionPolicyAction spaceState spaceOperator
Monte Carlo Every visit to Monte CarloEitherDiscreteDiscreteSample-means of state-values or action-values
TD learning State–action–reward–stateOff-policyDiscreteDiscreteState-value
Q-learning State–action–reward–stateOff-policyDiscreteDiscreteAction-value
SARSA State–action–reward–state–actionOn-policyDiscreteDiscreteAction-value
DQN Deep Q NetworkOff-policyDiscreteContinuousAction-value
DDPGDeep Deterministic Policy GradientOff-policyContinuousContinuousAction-value
A3CAsynchronous Advantage Actor-Critic AlgorithmOn-policyDiscreteContinuousAdvantage (=action-value - state-value)
TRPOTrust Region Policy OptimizationOn-policyContinuous or DiscreteContinuousAdvantage
PPO Proximal Policy OptimizationOn-policyContinuous or DiscreteContinuousAdvantage
TD3Twin Delayed Deep Deterministic Policy GradientOff-policyContinuousContinuousAction-value
SACSoft Actor-CriticOff-policyContinuousContinuousAdvantage
DSAC [43] [44] [45] Distributional Soft Actor CriticOff-policyContinuousContinuousAction-value distribution

Associative reinforcement learning

Associative reinforcement learning tasks combine facets of stochastic learning automata tasks and supervised learning pattern classification tasks. In associative reinforcement learning tasks, the learning system interacts in a closed loop with its environment. [46]

Deep reinforcement learning

This approach extends reinforcement learning by using a deep neural network and without explicitly designing the state space. [47] The work on learning ATARI games by Google DeepMind increased attention to deep reinforcement learning or end-to-end reinforcement learning. [48]

Adversarial deep reinforcement learning

Adversarial deep reinforcement learning is an active area of research in reinforcement learning focusing on vulnerabilities of learned policies. In this research area some studies initially showed that reinforcement learning policies are susceptible to imperceptible adversarial manipulations. [49] [50] [51] While some methods have been proposed to overcome these susceptibilities, in the most recent studies it has been shown that these proposed solutions are far from providing an accurate representation of current vulnerabilities of deep reinforcement learning policies. [52]

Fuzzy reinforcement learning

By introducing fuzzy inference in reinforcement learning, [53] approximating the state-action value function with fuzzy rules in continuous space becomes possible. The IF - THEN form of fuzzy rules make this approach suitable for expressing the results in a form close to natural language. Extending FRL with Fuzzy Rule Interpolation [54] allows the use of reduced size sparse fuzzy rule-bases to emphasize cardinal rules (most important state-action values).

Inverse reinforcement learning

In inverse reinforcement learning (IRL), no reward function is given. Instead, the reward function is inferred given an observed behavior from an expert. The idea is to mimic observed behavior, which is often optimal or close to optimal. [55] One popular IRL paradigm is named maximum entropy inverse reinforcement learning (MaxEnt IRL). [56] MaxEnt IRL estimates the parameters of a linear model of the reward function by maximizing the entropy of the probability distribution of observed trajectories subject to constraints related to matching expected feature counts. Recently it has been shown that MaxEnt IRL is a particular case of a more general framework named random utility inverse reinforcement learning (RU-IRL). [57] RU-IRL is based on random utility theory and Markov decision processes. While prior IRL approaches assume that the apparent random behavior of an observed agent is due to it following a random policy, RU-IRL assumes that the observed agent follows a deterministic policy but randomness in observed behavior is due to the fact that an observer only has partial access to the features the observed agent uses in decision making. The utility function is modeled as a random variable to account for the ignorance of the observer regarding the features the observed agent actually considers in its utility function.

Safe reinforcement learning

Safe reinforcement learning (SRL) can be defined as the process of learning policies that maximize the expectation of the return in problems in which it is important to ensure reasonable system performance and/or respect safety constraints during the learning and/or deployment processes. [58] An alternative approach is risk-averse reinforcement learning, where instead of the expected return, a risk-measure of the return is optimized, such as the Conditional Value at Risk (CVaR). [59] In addition to mitigating risk, the CVaR objective increases robustness to model uncertainties. [60] [61] However, CVaR optimization in risk-averse RL requires special care, to prevent gradient bias [62] and blindness to success. [63]

Self-reinforcement learning

Self-reinforcement learning (or self learning), is a learning paradigm which does not use the concept of immediate reward Ra(s,s') after transition from s to s' with action a. It does not use an external reinforcement, it only uses the agent internal self-reinforcement. The internal self-reinforcement is provided by mechanism of feelings and emotions. In the learning process emotions are backpropagated by a mechanism of secondary reinforcement. The learning equation does not include the immediate reward, it only includes the state evaluation.

The self-reinforcement algorithm updates a memory matrix W =||w(a,s)|| such that in each iteration executes the following machine learning routine: 1. in situation s perform action a 2. receive a consequence situation s' 3. compute state evaluation v(s') of how good is to be in the consequence situation s' 4. update crossbar memory w'(a,s) = w(a,s) + v(s')

Initial conditions of the memory are received as input from the genetic environment. It is a system with only one input (situation), and only one output (action, or behavior).

Self reinforcement (self learning) was introduced in 1982 along with a neural network capable of self-reinforcement learning, named Crossbar Adaptive Array (CAA). [64] [65] The CAA computes, in a crossbar fashion, both decisions about actions and emotions (feelings) about consequence states. The system is driven by the interaction between cognition and emotion. [66]

Statistical comparison of reinforcement learning algorithms

Efficient comparison of RL algorithms is essential for research, deployment and monitoring of RL systems. To compare different algorithms on a given environment, an agent can be trained for each algorithm. Since the performance is sensitive to implementation details, all algorithms should be implemented as closely as possible to each other. [67] After the training is finished, the agents can be run on a sample of test episodes, and their scores (returns) can be compared. Since episodes are typically assumed to be i.i.d, standard statistical tools can be used for hypothesis testing, such as T-test and permutation test. [68] This requires to accumulate all the rewards within an episode into a single number - the episodic return. However, this causes a loss of information, as different time-steps are averaged together, possibly with different levels of noise. Whenever the noise level varies across the episode, the statistical power can be improved significantly, by weighting the rewards according to their estimated noise. [69]

See also

Related Research Articles

Markov decision process (MDP), also called a stochastic dynamic program or stochastic control problem, is a model for sequential decision making when outcomes are uncertain.

Temporal difference (TD) learning refers to a class of model-free reinforcement learning methods which learn by bootstrapping from the current estimate of the value function. These methods sample from the environment, like Monte Carlo methods, and perform updates based on current estimates, like dynamic programming methods.

<span class="mw-page-title-main">Bellman equation</span> Necessary condition for optimality associated with dynamic programming

A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. It writes the "value" of a decision problem at a certain point in time in terms of the payoff from some initial choices and the "value" of the remaining decision problem that results from those initial choices. This breaks a dynamic optimization problem into a sequence of simpler subproblems, as Bellman's “principle of optimality" prescribes. The equation applies to algebraic structures with a total ordering; for algebraic structures with a partial ordering, the generic Bellman's equation can be used.

Q-learning is a model-free reinforcement learning algorithm that teaches an agent to assign values to each action it might take, conditioned on the agent being in a particular state. It does not require a model of the environment, and it can handle problems with stochastic transitions and rewards without requiring adaptations.

<span class="mw-page-title-main">Multi-armed bandit</span> Resource problem in machine learning

In probability theory and machine learning, the multi-armed bandit problem is a problem in which a decision maker iteratively selects one of multiple fixed choices when the properties of each choice are only partially known at the time of allocation, and may become better understood as time passes. A fundamental aspect of bandit problems is that choosing an arm does not affect the properties of the arm or other arms.

A partially observable Markov decision process (POMDP) is a generalization of a Markov decision process (MDP). A POMDP models an agent decision process in which it is assumed that the system dynamics are determined by an MDP, but the agent cannot directly observe the underlying state. Instead, it must maintain a sensor model and the underlying MDP. Unlike the policy function in MDP which maps the underlying states to the actions, POMDP's policy is a mapping from the history of observations to the actions.

The Gittins index is a measure of the reward that can be achieved through a given stochastic process with certain properties, namely: the process has an ultimate termination state and evolves with an option, at each intermediate state, of terminating. Upon terminating at a given state, the reward achieved is the sum of the probabilistic expected rewards associated with every state from the actual terminating state to the ultimate terminal state, inclusive. The index is a real scalar.

State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision process policy, used in the reinforcement learning area of machine learning. It was proposed by Rummery and Niranjan in a technical note with the name "Modified Connectionist Q-Learning" (MCQ-L). The alternative name SARSA, proposed by Rich Sutton, was only mentioned as a footnote.

In applied mathematics, proto-value functions (PVFs) are automatically learned basis functions that are useful in approximating task-specific value functions, providing a compact representation of the powers of transition matrices. They provide a novel framework for solving the credit assignment problem. The framework introduces a novel approach to solving Markov decision processes (MDP) and reinforcement learning problems, using multiscale spectral and manifold learning methods. Proto-value functions are generated by spectral analysis of a graph, using the graph Laplacian.

In machine learning, automatic basis function construction is the mathematical method of looking for a set of task-independent basis functions that map the state space to a lower-dimensional embedding, while still representing the value function accurately. Automatic basis construction is independent of prior knowledge of the domain, which allows it to perform well where expert-constructed basis functions are difficult or impossible to create.

Mean-field game theory is the study of strategic decision making by small interacting agents in very large populations. It lies at the intersection of game theory with stochastic analysis and control theory. The use of the term "mean field" is inspired by mean-field theory in physics, which considers the behavior of systems of large numbers of particles where individual particles have negligible impacts upon the system. In other words, each agent acts according to his minimization or maximization problem taking into account other agents’ decisions and because their population is large we can assume the number of agents goes to infinity and a representative agent exists.

<span class="mw-page-title-main">Multi-agent pathfinding</span> Pathfinding problem

The problem of Multi-Agent Pathfinding (MAPF) is an instance of multi-agent planning and consists in the computation of collision-free paths for a group of agents from their location to an assigned target. It is an optimization problem, since the aim is to find those paths that optimize a given objective function, usually defined as the number of time steps until all agents reach their goal cells. MAPF is the multi-agent generalization of the pathfinding problem, and it is closely related to the shortest path problem in the context of graph theory.

In reinforcement learning (RL), a model-free algorithm is an algorithm which does not estimate the transition probability distribution associated with the Markov decision process (MDP), which, in RL, represents the problem to be solved. The transition probability distribution and the reward function are often collectively called the "model" of the environment, hence the name "model-free". A model-free RL algorithm can be thought of as an "explicit" trial-and-error algorithm. Typical examples of model-free algorithms include Monte Carlo (MC) RL, SARSA, and Q-learning.

Deep reinforcement learning is a subfield of machine learning that combines reinforcement learning (RL) and deep learning. RL considers the problem of a computational agent learning to make decisions by trial and error. Deep RL incorporates deep learning into the solution, allowing agents to make decisions from unstructured input data without manual engineering of the state space. Deep RL algorithms are able to take in very large inputs and decide what actions to perform to optimize an objective. Deep reinforcement learning has been used for a diverse set of applications including but not limited to robotics, video games, natural language processing, computer vision, education, transportation, finance and healthcare.

<span class="mw-page-title-main">Multi-agent reinforcement learning</span> Sub-field of reinforcement learning

Multi-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the interests of other agents, resulting in complex group dynamics.

Self-play is a technique for improving the performance of reinforcement learning agents. Intuitively, agents learn to improve their performance by playing "against themselves".

Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent's decision function to accomplish difficult tasks. PPO was developed by John Schulman in 2017, and had become the default RL algorithm at the US artificial intelligence company OpenAI. Since 2018, PPO has seen success in a wide variety of applications, such as controlling a robotic arm, beating professional players at Dota 2, and excelling in Atari games. Many experts called PPO the state of the art, due to its ability to strike a balance between performance and comprehension. Compared with other algorithms, the three main advantages of PPO are simplicity, stability, and sample efficiency.

The exploration-exploitation dilemma, also known as the explore-exploit tradeoff, is a fundamental concept in decision-making that arises in many domains. It is depicted as the balancing act between two opposing strategies. Exploitation involves choosing the best option based on current knowledge of the system, while exploration involves trying out new options that may lead to better outcomes in the future at the expense of an exploitation opportunity. Finding the optimal balance between these two strategies is a crucial challenge in many decision-making problems whose goal is to maximize long-term benefits.

<span class="mw-page-title-main">Reinforcement learning from human feedback</span> Machine learning technique

In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning.

Imitation learning is a paradigm in reinforcement learning, where an agent learns to perform a task by supervised learning from expert demonstrations. It is also called learning from demonstration and apprenticeship learning.

References

  1. Kaelbling, Leslie P.; Littman, Michael L.; Moore, Andrew W. (1996). "Reinforcement Learning: A Survey". Journal of Artificial Intelligence Research. 4: 237–285. arXiv: cs/9605103 . doi:10.1613/jair.301. S2CID   1708582. Archived from the original on 2001-11-20.
  2. van Otterlo, M.; Wiering, M. (2012). "Reinforcement Learning and Markov Decision Processes". Reinforcement Learning. Adaptation, Learning, and Optimization. Vol. 12. pp. 3–42. doi:10.1007/978-3-642-27645-3_1. ISBN   978-3-642-27644-6.
  3. 1 2 Li, Shengbo (2023). Reinforcement Learning for Sequential Decision and Optimal Control (First ed.). Springer Verlag, Singapore. pp. 1–460. doi:10.1007/978-981-19-7784-8. ISBN   978-9-811-97783-1. S2CID   257928563.{{cite book}}: CS1 maint: location missing publisher (link)
  4. Russell, Stuart J.; Norvig, Peter (2010). Artificial intelligence : a modern approach (Third ed.). Upper Saddle River, New Jersey. pp. 830, 831. ISBN   978-0-13-604259-4.{{cite book}}: CS1 maint: location missing publisher (link)
  5. Lee, Daeyeol; Seo, Hyojung; Jung, Min Whan (21 July 2012). "Neural Basis of Reinforcement Learning and Decision Making". Annual Review of Neuroscience. 35 (1): 287–308. doi:10.1146/annurev-neuro-062111-150512. PMC   3490621 . PMID   22462543.
  6. Salazar Duque, Edgar Mauricio; Giraldo, Juan S.; Vergara, Pedro P.; Nguyen, Phuong; Van Der Molen, Anne; Slootweg, Han (2022). "Community energy storage operation via reinforcement learning with eligibility traces". Electric Power Systems Research. 212. Bibcode:2022EPSR..21208515S. doi: 10.1016/j.epsr.2022.108515 . S2CID   250635151.
  7. Xie, Zhaoming; Hung Yu Ling; Nam Hee Kim; Michiel van de Panne (2020). "ALLSTEPS: Curriculum-driven Learning of Stepping Stone Skills". arXiv: 2005.04323 [cs.GR].
  8. Vergara, Pedro P.; Salazar, Mauricio; Giraldo, Juan S.; Palensky, Peter (2022). "Optimal dispatch of PV inverters in unbalanced distribution systems using Reinforcement Learning". International Journal of Electrical Power & Energy Systems. 136. Bibcode:2022IJEPE.13607628V. doi: 10.1016/j.ijepes.2021.107628 . S2CID   244099841.
  9. Sutton & Barto 2018, Chapter 11.
  10. Ren, Yangang; Jiang, Jianhua; Zhan, Guojian; Li, Shengbo Eben; Chen, Chen; Li, Keqiang; Duan, Jingliang (2022). "Self-Learned Intelligence for Integrated Decision and Control of Automated Vehicles at Signalized Intersections". IEEE Transactions on Intelligent Transportation Systems. 23 (12): 24145–24156. arXiv: 2110.12359 . doi:10.1109/TITS.2022.3196167.
  11. Gosavi, Abhijit (2003). Simulation-based Optimization: Parametric Optimization Techniques and Reinforcement. Operations Research/Computer Science Interfaces Series. Springer. ISBN   978-1-4020-7454-7.
  12. 1 2 Burnetas, Apostolos N.; Katehakis, Michael N. (1997), "Optimal adaptive policies for Markov Decision Processes", Mathematics of Operations Research , 22 (1): 222–255, doi:10.1287/moor.22.1.222, JSTOR   3690147
  13. Tokic, Michel; Palm, Günther (2011), "Value-Difference Based Exploration: Adaptive Control Between Epsilon-Greedy and Softmax" (PDF), KI 2011: Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 7006, Springer, pp. 335–346, ISBN   978-3-642-24455-1
  14. 1 2 3 "Reinforcement learning: An introduction" (PDF). Archived from the original (PDF) on 2017-07-12. Retrieved 2017-07-23.
  15. Singh, Satinder P.; Sutton, Richard S. (1996-03-01). "Reinforcement learning with replacing eligibility traces". Machine Learning. 22 (1): 123–158. doi:10.1007/BF00114726. ISSN   1573-0565.
  16. Sutton, Richard S. (1984). Temporal Credit Assignment in Reinforcement Learning (PhD thesis). University of Massachusetts, Amherst, MA. Archived from the original on 2017-03-30. Retrieved 2017-03-29.
  17. Sutton & Barto 2018, §6. Temporal-Difference Learning.
  18. Bradtke, Steven J.; Barto, Andrew G. (1996). "Learning to predict by the method of temporal differences". Machine Learning. 22: 33–57. CiteSeerX   10.1.1.143.857 . doi:10.1023/A:1018056104778. S2CID   20327856.
  19. Watkins, Christopher J.C.H. (1989). Learning from Delayed Rewards (PDF) (PhD thesis). King’s College, Cambridge, UK.
  20. Matzliach, Barouch; Ben-Gal, Irad; Kagan, Evgeny (2022). "Detection of Static and Mobile Targets by an Autonomous Agent with Deep Q-Learning Abilities". Entropy. 24 (8): 1168. Bibcode:2022Entrp..24.1168M. doi: 10.3390/e24081168 . PMC   9407070 . PMID   36010832.
  21. Williams, Ronald J. (1987). "A class of gradient-estimating algorithms for reinforcement learning in neural networks". Proceedings of the IEEE First International Conference on Neural Networks. CiteSeerX   10.1.1.129.8871 .
  22. Peters, Jan; Vijayakumar, Sethu; Schaal, Stefan (2003). Reinforcement Learning for Humanoid Robotics (PDF). IEEE-RAS International Conference on Humanoid Robots. Archived from the original (PDF) on 2013-05-12.
  23. Juliani, Arthur (2016-12-17). "Simple Reinforcement Learning with Tensorflow Part 8: Asynchronous Actor-Critic Agents (A3C)". Medium. Retrieved 2018-02-22.
  24. Deisenroth, Marc Peter; Neumann, Gerhard; Peters, Jan (2013). A Survey on Policy Search for Robotics (PDF). Foundations and Trends in Robotics. Vol. 2. NOW Publishers. pp. 1–142. doi:10.1561/2300000021. hdl:10044/1/12051.
  25. Sutton, Richard (1990). "Integrated Architectures for Learning, Planning and Reacting based on Dynamic Programming". Machine Learning: Proceedings of the Seventh International Workshop.
  26. Lin, Long-Ji (1992). "Self-improving reactive agents based on reinforcement learning, planning and teaching" (PDF). Machine Learning volume 8. doi:10.1007/BF00992699.
  27. Zou, Lan (2023-01-01), Zou, Lan (ed.), "Chapter 7 - Meta-reinforcement learning", Meta-Learning, Academic Press, pp. 267–297, doi:10.1016/b978-0-323-89931-4.00011-0, ISBN   978-0-323-89931-4 , retrieved 2023-11-08
  28. van Hasselt, Hado; Hessel, Matteo; Aslanides, John (2019). "When to use parametric models in reinforcement learning?" (PDF). Advances in Neural Information Processing Systems 32.
  29. Grondman, Ivo; Vaandrager, Maarten; Busoniu, Lucian; Babuska, Robert; Schuitema, Erik (2012-06-01). "Efficient Model Learning Methods for Actor–Critic Control". IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 42 (3): 591–602. doi:10.1109/TSMCB.2011.2170565. ISSN   1083-4419. PMID   22156998.
  30. "On the Use of Reinforcement Learning for Testing Game Mechanics : ACM - Computers in Entertainment". cie.acm.org. Retrieved 2018-11-27.
  31. Riveret, Regis; Gao, Yang (2019). "A probabilistic argumentation framework for reinforcement learning agents". Autonomous Agents and Multi-Agent Systems. 33 (1–2): 216–274. doi:10.1007/s10458-019-09404-2. S2CID   71147890.
  32. Yamagata, Taku; McConville, Ryan; Santos-Rodriguez, Raul (2021-11-16). "Reinforcement Learning with Feedback from Multiple Humans with Diverse Skills". arXiv: 2111.08596 [cs.LG].
  33. Kulkarni, Tejas D.; Narasimhan, Karthik R.; Saeedi, Ardavan; Tenenbaum, Joshua B. (2016). "Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation". Proceedings of the 30th International Conference on Neural Information Processing Systems. NIPS'16. USA: Curran Associates Inc.: 3682–3690. arXiv: 1604.06057 . Bibcode:2016arXiv160406057K. ISBN   978-1-5108-3881-9.
  34. "Reinforcement Learning / Successes of Reinforcement Learning". umichrl.pbworks.com. Retrieved 2017-08-06.
  35. Dey, Somdip; Singh, Amit Kumar; Wang, Xiaohang; McDonald-Maier, Klaus (March 2020). "User Interaction Aware Reinforcement Learning for Power and Thermal Efficiency of CPU-GPU Mobile MPSoCs". 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE) (PDF). pp. 1728–1733. doi:10.23919/DATE48585.2020.9116294. ISBN   978-3-9819263-4-7. S2CID   219858480.
  36. Quested, Tony. "Smartphones get smarter with Essex innovation". Business Weekly. Retrieved 2021-06-17.
  37. Williams, Rhiannon (2020-07-21). "Future smartphones 'will prolong their own battery life by monitoring owners' behaviour'". i . Retrieved 2021-06-17.
  38. Kaplan, F.; Oudeyer, P. (2004). "Maximizing Learning Progress: An Internal Reward System for Development". In Iida, F.; Pfeifer, R.; Steels, L.; Kuniyoshi, Y. (eds.). Embodied Artificial Intelligence. Lecture Notes in Computer Science. Vol. 3139. Berlin; Heidelberg: Springer. pp. 259–270. doi:10.1007/978-3-540-27833-7_19. ISBN   978-3-540-22484-6. S2CID   9781221.
  39. Klyubin, A.; Polani, D.; Nehaniv, C. (2008). "Keep your options open: an information-based driving principle for sensorimotor systems". PLOS ONE. 3 (12): e4018. Bibcode:2008PLoSO...3.4018K. doi: 10.1371/journal.pone.0004018 . PMC   2607028 . PMID   19107219.
  40. Barto, A. G. (2013). "Intrinsic motivation and reinforcement learning". Intrinsically Motivated Learning in Natural and Artificial Systems (PDF). Berlin; Heidelberg: Springer. pp. 17–47.
  41. Dabérius, Kevin; Granat, Elvin; Karlsson, Patrik (2020). "Deep Execution - Value and Policy Based Reinforcement Learning for Trading and Beating Market Benchmarks". The Journal of Machine Learning in Finance. 1. SSRN   3374766.
  42. George Karimpanal, Thommen; Bouffanais, Roland (2019). "Self-organizing maps for storage and transfer of knowledge in reinforcement learning". Adaptive Behavior. 27 (2): 111–126. arXiv: 1811.08318 . doi:10.1177/1059712318818568. ISSN   1059-7123. S2CID   53774629.
  43. J Duan; Y Guan; S Li (2021). "Distributional Soft Actor-Critic: Off-policy reinforcement learning for addressing value estimation errors". IEEE Transactions on Neural Networks and Learning Systems. 33 (11): 6584–6598. arXiv: 2001.02811 . doi:10.1109/TNNLS.2021.3082568. PMID   34101599. S2CID   211259373.
  44. Y Ren; J Duan; S Li (2020). "Improving Generalization of Reinforcement Learning with Minimax Distributional Soft Actor-Critic". 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). pp. 1–6. arXiv: 2002.05502 . doi:10.1109/ITSC45102.2020.9294300. ISBN   978-1-7281-4149-7. S2CID   211096594.
  45. Duan, J; Wang, W; Xiao, L (2023-10-26). "DSAC-T: Distributional Soft Actor-Critic with Three Refinements". arXiv: 2310.05858 [cs.LG].
  46. Soucek, Branko (6 May 1992). Dynamic, Genetic and Chaotic Programming: The Sixth-Generation Computer Technology Series. John Wiley & Sons, Inc. p. 38. ISBN   0-471-55717-X.
  47. Francois-Lavet, Vincent; et al. (2018). "An Introduction to Deep Reinforcement Learning". Foundations and Trends in Machine Learning. 11 (3–4): 219–354. arXiv: 1811.12560 . Bibcode:2018arXiv181112560F. doi:10.1561/2200000071. S2CID   54434537.
  48. Mnih, Volodymyr; et al. (2015). "Human-level control through deep reinforcement learning". Nature. 518 (7540): 529–533. Bibcode:2015Natur.518..529M. doi:10.1038/nature14236. PMID   25719670. S2CID   205242740.
  49. Goodfellow, Ian; Shlens, Jonathan; Szegedy, Christian (2015). "Explaining and Harnessing Adversarial Examples". International Conference on Learning Representations. arXiv: 1412.6572 .
  50. Behzadan, Vahid; Munir, Arslan (2017). "Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks". Machine Learning and Data Mining in Pattern Recognition. Lecture Notes in Computer Science. Vol. 10358. pp. 262–275. arXiv: 1701.04143 . doi:10.1007/978-3-319-62416-7_19. ISBN   978-3-319-62415-0. S2CID   1562290.
  51. Pieter, Huang, Sandy Papernot, Nicolas Goodfellow, Ian Duan, Yan Abbeel (2017-02-07). Adversarial Attacks on Neural Network Policies. OCLC   1106256905.{{cite book}}: CS1 maint: multiple names: authors list (link)
  52. Korkmaz, Ezgi (2022). "Deep Reinforcement Learning Policies Learn Shared Adversarial Features Across MDPs". Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22). 36 (7): 7229–7238. arXiv: 2112.09025 . doi: 10.1609/aaai.v36i7.20684 . S2CID   245219157.
  53. Berenji, H.R. (1994). "Fuzzy Q-learning: A new approach for fuzzy dynamic programming". Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference. Orlando, FL, USA: IEEE. pp. 486–491. doi:10.1109/FUZZY.1994.343737. ISBN   0-7803-1896-X. S2CID   56694947.
  54. Vincze, David (2017). "Fuzzy rule interpolation and reinforcement learning" (PDF). 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE. pp. 173–178. doi:10.1109/SAMI.2017.7880298. ISBN   978-1-5090-5655-2. S2CID   17590120.
  55. Ng, A. Y.; Russell, S. J. (2000). "Algorithms for Inverse Reinforcement Learning" (PDF). Proceeding ICML '00 Proceedings of the Seventeenth International Conference on Machine Learning. pp. 663–670. ISBN   1-55860-707-2.
  56. Ziebart, Brian D.; Maas, Andrew; Bagnell, J. Andrew; Dey, Anind K. (2008-07-13). "Maximum entropy inverse reinforcement learning". Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 3. AAAI'08. Chicago, Illinois: AAAI Press: 1433–1438. ISBN   978-1-57735-368-3. S2CID   336219.
  57. Pitombeira-Neto, Anselmo R.; Santos, Helano P.; Coelho da Silva, Ticiana L.; de Macedo, José Antonio F. (March 2024). "Trajectory modeling via random utility inverse reinforcement learning". Information Sciences. 660: 120128. arXiv: 2105.12092 . doi:10.1016/j.ins.2024.120128. ISSN   0020-0255. S2CID   235187141.
  58. García, Javier; Fernández, Fernando (1 January 2015). "A comprehensive survey on safe reinforcement learning" (PDF). The Journal of Machine Learning Research. 16 (1): 1437–1480.
  59. Dabney, Will; Ostrovski, Georg; Silver, David; Munos, Remi (2018-07-03). "Implicit Quantile Networks for Distributional Reinforcement Learning". Proceedings of the 35th International Conference on Machine Learning. PMLR: 1096–1105. arXiv: 1806.06923 .
  60. Chow, Yinlam; Tamar, Aviv; Mannor, Shie; Pavone, Marco (2015). "Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach". Advances in Neural Information Processing Systems. 28. Curran Associates, Inc. arXiv: 1506.02188 .
  61. "Train Hard, Fight Easy: Robust Meta Reinforcement Learning". scholar.google.com. Retrieved 2024-06-21.
  62. Tamar, Aviv; Glassner, Yonatan; Mannor, Shie (2015-02-21). "Optimizing the CVaR via Sampling". Proceedings of the AAAI Conference on Artificial Intelligence. 29 (1). arXiv: 1404.3862 . doi:10.1609/aaai.v29i1.9561. ISSN   2374-3468.
  63. Greenberg, Ido; Chow, Yinlam; Ghavamzadeh, Mohammad; Mannor, Shie (2022-12-06). "Efficient Risk-Averse Reinforcement Learning". Advances in Neural Information Processing Systems. 35: 32639–32652. arXiv: 2205.05138 .
  64. Bozinovski, S. (1982). "A self-learning system using secondary reinforcement". In Trappl, Robert (ed.). Cybernetics and Systems Research: Proceedings of the Sixth European Meeting on Cybernetics and Systems Research. North-Holland. pp. 397–402. ISBN 978-0-444-86488-8
  65. Bozinovski S. (1995) "Neuro genetic agents and structural theory of self-reinforcement learning systems". CMPSCI Technical Report 95-107, University of Massachusetts at Amherst
  66. Bozinovski, S. (2014) "Modeling mechanisms of cognition-emotion interaction in artificial neural networks, since 1981." Procedia Computer Science p. 255-263
  67. Engstrom, Logan; Ilyas, Andrew; Santurkar, Shibani; Tsipras, Dimitris; Janoos, Firdaus; Rudolph, Larry; Madry, Aleksander (2019-09-25). "Implementation Matters in Deep RL: A Case Study on PPO and TRPO". ICLR.
  68. Colas, Cédric (2019-03-06). "A Hitchhiker's Guide to Statistical Comparisons of Reinforcement Learning Algorithms". International Conference on Learning Representations. arXiv: 1904.06979 .
  69. Greenberg, Ido; Mannor, Shie (2021-07-01). "Detecting Rewards Deterioration in Episodic Reinforcement Learning". Proceedings of the 38th International Conference on Machine Learning. PMLR: 3842–3853. arXiv: 2010.11660 .

Further reading