Association rule learning

Last updated

Association rule learning is a rule-based machine learning method for discovering interesting relations between variables in large databases. It is intended to identify strong rules discovered in databases using some measures of interestingness. [1] In any given transaction with a variety of items, association rules are meant to discover the rules that determine how or why certain items are connected.

Contents

Based on the concept of strong rules, Rakesh Agrawal, Tomasz Imieliński and Arun Swami [2] introduced association rules for discovering regularities between products in large-scale transaction data recorded by point-of-sale (POS) systems in supermarkets. For example, the rule found in the sales data of a supermarket would indicate that if a customer buys onions and potatoes together, they are likely to also buy hamburger meat. Such information can be used as the basis for decisions about marketing activities such as, e.g., promotional pricing or product placements.

In addition to the above example from market basket analysis, association rules are employed today in many application areas including Web usage mining, intrusion detection, continuous production, and bioinformatics. In contrast with sequence mining, association rule learning typically does not consider the order of items either within a transaction or across transactions.

The association rule algorithm itself consists of various parameters that can make it difficult for those without some expertise in data mining to execute, with many rules that are arduous to understand. [3]

Definition

A Venn Diagram to show the associations between itemsets X and Y of a dataset. All transactions that contain item X are located in the white, left portion of the circle, while those containing Y are colored red and on the right. Any transaction containing both X and Y are located in the middle and are colored pink. Multiple concepts can be used to depict information from this graph. For example, if one takes all of the transactions in the pink section and divided them by the total amount of transactions (transactions containing X (white) + transactions containing Y(red)), the output would be known as the support. An instance of getting the result of a method known as the confidence, one can take all of the transactions in the middle (pink) and divide them by all transactions that contain Y (red and pink). In this case, Y is the antecedent and X is the consequent. Association Rule Mining Venn Diagram.png
A Venn Diagram to show the associations between itemsets X and Y of a dataset. All transactions that contain item X are located in the white, left portion of the circle, while those containing Y are colored red and on the right. Any transaction containing both X and Y are located in the middle and are colored pink. Multiple concepts can be used to depict information from this graph. For example, if one takes all of the transactions in the pink section and divided them by the total amount of transactions (transactions containing X (white) + transactions containing Y(red)), the output would be known as the support. An instance of getting the result of a method known as the confidence, one can take all of the transactions in the middle (pink) and divide them by all transactions that contain Y (red and pink). In this case, Y is the antecedent and X is the consequent.

Following the original definition by Agrawal, Imieliński, Swami [2] the problem of association rule mining is defined as:

Let be a set of n binary attributes called items.

Let be a set of transactions called the database.

Each transaction in D has a unique transaction ID and contains a subset of the items in I.

A rule is defined as an implication of the form:

, where .

In Agrawal, Imieliński, Swami [2] a rule is defined only between a set and a single item, for .

Every rule is composed by two different sets of items, also known as itemsets, X and Y, where X is called antecedent or left-hand-side (LHS) and Yconsequent or right-hand-side (RHS). The antecedent is that item that can be found in the data while the consequent is the item found when combined with the antecedent. The statement is often read as if X then Y, where the antecedent (X ) is the if and the consequent (Y) is the then. This simply implies that, in theory, whenever X occurs in a dataset, then Y will as well.

Process

Association rules are made by searching data for frequent if-then patterns and by using a certain criterion under Support and Confidence to define what the most important relationships are. Support is the evidence of how frequent an item appears in the data given, as Confidence is defined by how many times the if-then statements are found true. However, there is a third criteria that can be used, it is called Lift and it can be used to compare the expected Confidence and the actual Confidence. Lift will show how many times the if-then statement is expected to be found to be true.

Association rules are made to calculate from itemsets, which are created by two or more items. If the rules were built from the analyzing from all the possible itemsets from the data then there would be so many rules that they wouldn’t have any meaning. That is why Association rules are typically made from rules that are well represented by the data.

There are many different data mining techniques you could use to find certain analytics and results, for example, there is Classification analysis, Clustering analysis, and Regression analysis. [4] What technique you should use depends on what you are looking for with your data. Association rules are primarily used to find analytics and a prediction of customer behavior. For Classification analysis, it would most likely be used to question, make decisions, and predict behavior. [5] Clustering analysis is primarily used when there are no assumptions made about the likely relationships within the data. [5] Regression analysis Is used when you want to predict the value of a continuous dependent from a number of independent variables. [5]

Benefits

There are many benefits of using Association rules like finding the pattern that helps understand the correlations and co-occurrences between data sets. A very good real-world example that uses Association rules would be medicine. Medicine uses Association rules to help diagnose patients. When diagnosing patients there are many variables to consider as many diseases will share similar symptoms. With the use of the Association rules, doctors can determine the conditional probability of an illness by comparing symptom relationships from past cases. [6]

Downsides

However, Association rules also lead to many different downsides such as finding the appropriate parameter and threshold settings for the mining algorithm. But there is also the downside of having a large number of discovered rules. The reason is that this does not guarantee that the rules will be found relevant, but it could also cause the algorithm to have low performance. Sometimes the implemented algorithms will contain too many variables and parameters. For someone that doesn’t have a good concept of data mining, this might cause them to have trouble understanding it. [7]

Thresholds

Frequent itemset lattice, where the color of the box indicates how many transactions contain the combination of items. Note that lower levels of the lattice can contain at most the minimum number of their parents' items; e.g. {ac} can have only at most
min
(
a
,
c
)
{\displaystyle \min(a,c)}
items. This is called the downward-closure property. FrequentItems.png
Frequent itemset lattice, where the color of the box indicates how many transactions contain the combination of items. Note that lower levels of the lattice can contain at most the minimum number of their parents' items; e.g. {ac} can have only at most items. This is called the downward-closure property.

When using Association rules, you are most likely to only use Support and Confidence. However, this means you have to satisfy a user-specified minimum support and a user-specified minimum confidence at the same time. Usually, the Association rule generation is split into two different steps that needs to be applied:

  1. A minimum Support threshold to find all the frequent itemsets that are in the database.
  2. A minimum Confidence threshold to the frequent itemsets found to create rules.
Table 1. Example of Threshold for Support and Confidence.
ItemsSupportConfidenceItemsSupportConfidence
Item A30%50%Item C45%55%
Item B15%25%Item A30%50%
Item C45%55%Item D35%40%
Item D35%40%Item B15%25%

The Support Threshold is 30%, Confidence Threshold is 50%

The Table on the left is the original unorganized data and the table on the right is organized by the thresholds. In this case Item C is better than the thresholds for both Support and Confidence which is why it is first. Item A is second because its threshold values are spot on. Item D has met the threshold for Support but not Confidence. Item B has not met the threshold for either Support or Confidence and that is why it is last.

To find all the frequent itemsets in a database is not an easy task since it involves going through all the data to find all possible item combinations from all possible itemsets. The set of possible itemsets is the power set over I and has size , of course this means to exclude the empty set which is not considered to be a valid itemset. However, the size of the power set will grow exponentially in the number of item n that is within the power set I. An efficient search is possible by using the downward-closure property of support [2] [8] (also called anti-monotonicity [9] ). This would guarantee that a frequent itemset and all its subsets are also frequent and thus will have no infrequent itemsets as a subset of a frequent itemset. Exploiting this property, efficient algorithms (e.g., Apriori [10] and Eclat [11] ) can find all frequent itemsets.

Useful Concepts

Table 2. Example database with 5 transactions and 7 items
transaction IDmilkbreadbutterbeerdiaperseggsfruit
11100001
20010011
30001100
41110011
50100000

To illustrate the concepts, we use a small example from the supermarket domain. Table 2 shows a small database containing the items where, in each entry, the value 1 means the presence of the item in the corresponding transaction, and the value 0 represents the absence of an item in that transaction. The set of items is .

An example rule for the supermarket could be meaning that if butter and bread are bought, customers also buy milk.

In order to select interesting rules from the set of all possible rules, constraints on various measures of significance and interest are used. The best-known constraints are minimum thresholds on support and confidence.

Let be itemsets, an association rule and T a set of transactions of a given database.

Note: this example is extremely small. In practical applications, a rule needs a support of several hundred transactions before it can be considered statistically significant,[ citation needed ] and datasets often contain thousands or millions of transactions.

Support

Support is an indication of how frequently the itemset appears in the dataset.

In our example, it can be easier to explain support by writing [12] where A and B are separate item sets that occur in at the same time in a transaction.

Using Table 2 as an example, the itemset has a support of 1/5=0.2 since it occurs in 20% of all transactions (1 out of 5 transactions). The argument of support of X is a set of preconditions, and thus becomes more restrictive as it grows (instead of more inclusive). [13]

Furthermore, the itemset has a support of 1/5=0.2 as it appears in 20% of all transactions as well.

When using antecedents and consequents, it allows a data miner to determine the support of multiple items being bought together in comparison to the whole data set. For example, Table 2 shows that if milk is bought, then bread is bought has a support of 0.4 or 40%. This because in 2 out 5 of the transactions, milk as well as bread are bought. In smaller data sets like this example, it is harder to see a strong correlation when there are few samples, but when the data set grows larger, support can be used to find correlation between two or more products in the supermarket example.

Minimum support thresholds are useful for determining which itemsets are preferred or interesting.

If we set the support threshold to ≥0.4 in Table 3, then the would be removed since it did not meet the minimum threshold of 0.4. Minimum threshold is used to remove samples where there is not a strong enough support or confidence to deem the sample as important or interesting in the dataset.

Another way of finding interesting samples is to find the value of (support)×(confidence); this allows a data miner to see the samples where support and confidence are high enough to be highlighted in the dataset and prompt a closer look at the sample to find more information on the connection between the items.

Support can be beneficial for finding the connection between products in comparison to the whole dataset, whereas confidence looks at the connection between one or more items and another item. Below is a table that shows the comparison and contrast between support and support × confidence, using the information from Table 4 to derive the confidence values.

Table 3. Example of Support, and support × confidence
if Antecedent then Consequentsupportsupport X confidence
if buy milk, then buy bread2/5= 0.40.4×1.0= 0.4
if buy milk, then buy eggs1/5= 0.20.2×0.5= 0.1
if buy bread, then buy fruit2/5= 0.40.4×0.66= 0.264
if buy fruit, then buy eggs2/5= 0.40.4×0.66= 0.264
if buy milk and bread, then buy fruit2/5= 0.40.4×1.0= 0.4

The support of X with respect to T is defined as the proportion of transactions in the dataset which contains the itemset X. Denoting a transaction by where i is the unique identifier of the transaction and t is its itemset, the support may be written as:

This notation can be used when defining more complicated datasets where the items and itemsets may not be as easy as our supermarket example above. Other examples of where support can be used is in finding groups of genetic mutations that work collectively to cause a disease, investigating the number of subscribers that respond to upgrade offers, and discovering which products in a drug store are never bought together. [12]

Confidence

Confidence is the percentage of all transactions satisfying X that also satisfy Y. [14]

With respect to T, the confidence value of an association rule, often denoted as , is the ratio of transactions containing both X and Y to the total amount of X values present, where X is the antecedent and Y is the consequent.

Confidence can also be interpreted as an estimate of the conditional probability , the probability of finding the RHS of the rule in transactions under the condition that these transactions also contain the LHS. [13] [15]

It is commonly depicted as:

The equation illustrates that confidence can be computed by calculating the co-occurrence of transactions X and Y within the dataset in ratio to transactions containing only X. This means that the number of transactions in both X and Y is divided by those just in X .

For example, Table 2 shows the rule which has a confidence of in the dataset, which denotes that every time a customer buys butter and bread, they also buy milk. This particular example demonstrates the rule being correct 100% of the time for transactions containing both butter and bread. The rule , however, has a confidence of . This suggests that eggs are bought 67% of the times that fruit is brought. Within this particular dataset, fruit is purchased a total of 3 times, with two of those times consisting of egg purchases.

For larger datasets, a minimum threshold, or a percentage cutoff, for the confidence can be useful for determining item relationships. When applying this method to some of the data in Table 2, information that does not meet the requirements are removed. Table 4 shows association rule examples where the minimum threshold for confidence is 0.5 (50%). Any data that does not have a confidence of at least 0.5 is omitted. Generating thresholds allow for the association between items to become stronger as the data is further researched by emphasizing those that co-occur the most. The table uses the confidence information from Table 3 to implement the Support × Confidence column, where the relationship between items via their both confidence and support, instead of just one concept, is highlighted. Ranking the rules by Support × Confidence multiples the confidence of a particular rule to its support and is often implemented for a more in-depth understanding of the relationship between the items.

Table 4. Example of Confidence and Support × Confidence
if Antecedent then ConsequentConfidenceSupport × Confidence
if buy milk, then buy bread22 = 1.00.4×1.0= 0.4
if buy milk, then buy eggs12 = 0.50.2×0.5= 0.1
if buy bread, then buy fruit23 0.660.4×0.66= 0.264
if buy fruit, then buy eggs23 0.660.4×0.66= 0.264
if buy milk and bread, then buy fruit22 = 1.00.4×1.0= 0.4

Overall, using confidence in association rule mining is great way to bring awareness to data relations. Its greatest benefit is highlighting the relationship between particular items to one another within the set, as it compares co-occurrences of items to the total occurrence of the antecedent in the specific rule. However, confidence is not the optimal method for every concept in association rule mining. The disadvantage of using it is that it does not offer multiple difference outlooks on the associations. Unlike support, for instance, confidence does not provide the perspective of relationships between certain items in comparison to the entire dataset, so while milk and bread, for example, may occur 100% of the time for confidence, it only has a support of 0.4 (40%). This is why it is important to look at other viewpoints, such as Support × Confidence, instead of solely relying on one concept incessantly to define the relationships.

Lift

The lift of a rule is defined as:

or the ratio of the observed support to that expected if X and Y were independent.

For example, the rule has a lift of .

If the rule had a lift of 1, it would imply that the probability of occurrence of the antecedent and that of the consequent are independent of each other. When two events are independent of each other, no rule can be drawn involving those two events.

If the lift is > 1, that lets us know the degree to which those two occurrences are dependent on one another, and makes those rules potentially useful for predicting the consequent in future data sets.

If the lift is < 1, that lets us know the items are substitute to each other. This means that presence of one item has negative effect on presence of other item and vice versa.

The value of lift is that it considers both the support of the rule and the overall data set. [13]

Conviction

The conviction of a rule is defined as . [16]

For example, the rule has a conviction of , and can be interpreted as the ratio of the expected frequency that X occurs without Y (that is to say, the frequency that the rule makes an incorrect prediction) if X and Y were independent divided by the observed frequency of incorrect predictions. In this example, the conviction value of 1.2 shows that the rule would be incorrect 20% more often (1.2 times as often) if the association between X and Y was purely random chance.

Alternative measures of interestingness

In addition to confidence, other measures of interestingness for rules have been proposed. Some popular measures are:

Several more measures are presented and compared by Tan et al. [20] and by Hahsler. [21] Looking for techniques that can model what the user has known (and using these models as interestingness measures) is currently an active research trend under the name of "Subjective Interestingness."

History

The concept of association rules was popularized particularly due to the 1993 article of Agrawal et al., [2] which has acquired more than 23,790 citations according to Google Scholar, as of April 2021, and is thus one of the most cited papers in the Data Mining field. However, what is now called "association rules" is introduced already in the 1966 paper [22] on GUHA, a general data mining method developed by Petr Hájek et al. [23]

An early (circa 1989) use of minimum support and confidence to find all association rules is the Feature Based Modeling framework, which found all rules with and greater than user defined constraints. [24]

Statistically sound associations

One limitation of the standard approach to discovering associations is that by searching massive numbers of possible associations to look for collections of items that appear to be associated, there is a large risk of finding many spurious associations. These are collections of items that co-occur with unexpected frequency in the data, but only do so by chance. For example, suppose we are considering a collection of 10,000 items and looking for rules containing two items in the left-hand-side and 1 item in the right-hand-side. There are approximately 1,000,000,000,000 such rules. If we apply a statistical test for independence with a significance level of 0.05 it means there is only a 5% chance of accepting a rule if there is no association. If we assume there are no associations, we should nonetheless expect to find 50,000,000,000 rules. Statistically sound association discovery [25] [26] controls this risk, in most cases reducing the risk of finding any spurious associations to a user-specified significance level.

Algorithms

Many algorithms for generating association rules have been proposed.

Some well-known algorithms are Apriori, Eclat and FP-Growth, but they only do half the job, since they are algorithms for mining frequent itemsets. Another step needs to be done after to generate rules from frequent itemsets found in a database.

Apriori algorithm

Apriori is given by R. Agrawal and R. Srikant in 1994 for frequent item set mining and association rule learning. It proceeds by identifying the frequent individual items in the database and extending them to larger and larger item sets as long as those item sets appear sufficiently often. The name of the algorithm is Apriori because it uses prior knowledge of frequent itemset properties.

The control flow diagram for the Apriori algorithm APriori.png
The control flow diagram for the Apriori algorithm

Overview: Apriori uses a "bottom up" approach, where frequent subsets are extended one item at a time (a step known as candidate generation), and groups of candidates are tested against the data. The algorithm terminates when no further successful extensions are found. Apriori uses breadth-first search and a Hash tree structure to count candidate item sets efficiently. It generates candidate item sets of length  from item sets of length . Then it prunes the candidates which have an infrequent sub pattern. According to the downward closure lemma, the candidate set contains all frequent -length item sets. After that, it scans the transaction database to determine frequent item sets among the candidates.

Example: Assume that each row is a cancer sample with a certain combination of mutations labeled by a character in the alphabet. For example a row could have {a, c} which means it is affected by mutation 'a' and mutation 'c'.

Input Set
{a, b}{c, d}{a, d}{a, e}{b, d}{a, b, d}{a, c, d}{a, b, c, d}

Now we will generate the frequent item set by counting the number of occurrences of each character. This is also known as finding the support values. Then we will prune the item set by picking a minimum support threshold. For this pass of the algorithm we will pick 3.

Support Values
abcd
6436

Since all support values are three or above there is no pruning. The frequent item set is {a}, {b}, {c}, and {d}. After this we will repeat the process by counting pairs of mutations in the input set.

Support Values
{a, b}{a, c}{a, d}{b, c}{b, d}{c, d}
324133

Now we will make our minimum support value 4 so only {a, d} will remain after pruning. Now we will use the frequent item set to make combinations of triplets. We will then repeat the process by counting occurrences of triplets of mutations in the input set.

Support Values
{a, c, d}
2

Since we only have one item the next set of combinations of quadruplets is empty so the algorithm will stop.

Advantages and Limitations:

Apriori has some limitations. Candidate generation can result in large candidate sets. For example a 10^4 frequent 1-itemset will generate a 10^7 candidate 2-itemset. The algorithm also needs to frequently scan the database, to be specific n+1 scans where n is the length of the longest pattern. Apriori is slower than the Eclat algorithm. However, Apriori performs well compared to Eclat when the dataset is large. This is because in the Eclat algorithm if the dataset is too large the tid-lists become too large for memory. FP-growth outperforms the Apriori and Eclat. This is due to the FP-growth algorithm not having candidate generation or test, using a compact data structure, and only having one database scan. [27]

Eclat algorithm

Eclat [11] (alt. ECLAT, stands for Equivalence Class Transformation) is a backtracking algorithm, which traverses the frequent itemset lattice graph in a depth-first search (DFS) fashion. Whereas the breadth-first search (BFS) traversal used in the Apriori algorithm will end up checking every subset of an itemset before checking it, DFS traversal checks larger itemsets and can save on checking the support of some of its subsets by virtue of the downward-closer property. Furthermore it will almost certainly use less memory as DFS has a lower space complexity than BFS.

To illustrate this, let there be a frequent itemset {a, b, c}. a DFS may check the nodes in the frequent itemset lattice in the following order: {a} → {a, b} → {a, b, c}, at which point it is known that {b}, {c}, {a, c}, {b, c} all satisfy the support constraint by the downward-closure property. BFS would explore each subset of {a, b, c} before finally checking it. As the size of an itemset increases, the number of its subsets undergoes combinatorial explosion.

It is suitable for both sequential as well as parallel execution with locality-enhancing properties. [28] [29]

FP-growth algorithm

FP stands for frequent pattern. [30]

In the first pass, the algorithm counts the occurrences of items (attribute-value pairs) in the dataset of transactions, and stores these counts in a 'header table'. In the second pass, it builds the FP-tree structure by inserting transactions into a trie.

Items in each transaction have to be sorted by descending order of their frequency in the dataset before being inserted so that the tree can be processed quickly. Items in each transaction that do not meet the minimum support requirement are discarded. If many transactions share most frequent items, the FP-tree provides high compression close to tree root.

Recursive processing of this compressed version of the main dataset grows frequent item sets directly, instead of generating candidate items and testing them against the entire database (as in the apriori algorithm).

Growth begins from the bottom of the header table i.e. the item with the smallest support by finding all sorted transactions that end in that item. Call this item .

A new conditional tree is created which is the original FP-tree projected onto . The supports of all nodes in the projected tree are re-counted with each node getting the sum of its children counts. Nodes (and hence subtrees) that do not meet the minimum support are pruned. Recursive growth ends when no individual items conditional on meet the minimum support threshold. The resulting paths from root to will be frequent itemsets. After this step, processing continues with the next least-supported header item of the original FP-tree.

Once the recursive process has completed, all frequent item sets will have been found, and association rule creation begins. [31]

Others

ASSOC

The ASSOC procedure [32] is a GUHA method which mines for generalized association rules using fast bitstrings operations. The association rules mined by this method are more general than those output by apriori, for example "items" can be connected both with conjunction and disjunctions and the relation between antecedent and consequent of the rule is not restricted to setting minimum support and confidence as in apriori: an arbitrary combination of supported interest measures can be used.

OPUS is an efficient algorithm for rule discovery that, in contrast to most alternatives, does not require either monotone or anti-monotone constraints such as minimum support. [33] Initially used to find rules for a fixed consequent [33] [34] it has subsequently been extended to find rules with any item as a consequent. [35] OPUS search is the core technology in the popular Magnum Opus association discovery system.

Lore

A famous story about association rule mining is the "beer and diaper" story. A purported survey of behavior of supermarket shoppers discovered that customers (presumably young men) who buy diapers tend also to buy beer. This anecdote became popular as an example of how unexpected association rules might be found from everyday data. There are varying opinions as to how much of the story is true. [36] Daniel Powers says: [36]

In 1992, Thomas Blischok, manager of a retail consulting group at Teradata, and his staff prepared an analysis of 1.2 million market baskets from about 25 Osco Drug stores. Database queries were developed to identify affinities. The analysis "did discover that between 5:00 and 7:00 p.m. that consumers bought beer and diapers". Osco managers did NOT exploit the beer and diapers relationship by moving the products closer together on the shelves.

Other types of association rule mining

Multi-Relation Association Rules (MRAR): These are association rules where each item may have several relations. These relations indicate indirect relationships between the entities. Consider the following MRAR where the first item consists of three relations live in, nearby and humid: “Those who live in a place which is nearby a city with humid climate type and also are younger than 20 their health condition is good”. Such association rules can be extracted from RDBMS data or semantic web data. [37]

Contrast set learning is a form of associative learning. Contrast set learners use rules that differ meaningfully in their distribution across subsets. [38] [39]

Weighted class learning is another form of associative learning where weights may be assigned to classes to give focus to a particular issue of concern for the consumer of the data mining results.

High-order pattern discovery facilitates the capture of high-order (polythetic) patterns or event associations that are intrinsic to complex real-world data. [40]

K-optimal pattern discovery provides an alternative to the standard approach to association rule learning which requires that each pattern appear frequently in the data.

Approximate Frequent Itemset mining is a relaxed version of Frequent Itemset mining that allows some of the items in some of the rows to be 0. [41]

Generalized Association Rules hierarchical taxonomy (concept hierarchy)

Quantitative Association Rules categorical and quantitative data

Interval Data Association Rules e.g. partition the age into 5-year-increment ranged

Sequential pattern mining discovers subsequences that are common to more than minsup (minimum support threshold) sequences in a sequence database, where minsup is set by the user. A sequence is an ordered list of transactions. [42]

Subspace Clustering, a specific type of clustering high-dimensional data, is in many variants also based on the downward-closure property for specific clustering models. [43]

Warmr, shipped as part of the ACE data mining suite, allows association rule learning for first order relational rules. [44]

See also

Related Research Articles

Pattern recognition is the task of assigning a class to an observation based on patterns extracted from data. While similar, pattern recognition (PR) is not to be confused with pattern machines (PM) which may possess (PR) capabilities but their primary function is to distinguish and create emergent pattern. PR has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Pattern recognition has its origins in statistics and engineering; some modern approaches to pattern recognition include the use of machine learning, due to the increased availability of big data and a new abundance of processing power.

In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector.

<span class="mw-page-title-main">Quantization (signal processing)</span> Process of mapping a continuous set to a countable set

Quantization, in mathematics and digital signal processing, is the process of mapping input values from a large set to output values in a (countable) smaller set, often with a finite number of elements. Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all lossy compression algorithms.

Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning. In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

Apriori is an algorithm for frequent item set mining and association rule learning over relational databases. It proceeds by identifying the frequent individual items in the database and extending them to larger and larger item sets as long as those item sets appear sufficiently often in the database. The frequent item sets determined by Apriori can be used to determine association rules which highlight general trends in the database: this has applications in domains such as market basket analysis.

<span class="mw-page-title-main">Cluster analysis</span> Grouping a set of objects by similarity

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning.

Random sample consensus (RANSAC) is an iterative method to estimate parameters of a mathematical model from a set of observed data that contains outliers, when outliers are to be accorded no influence on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method. It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain probability, with this probability increasing as more iterations are allowed. The algorithm was first published by Fischler and Bolles at SRI International in 1981. They used RANSAC to solve the Location Determination Problem (LDP), where the goal is to determine the points in the space that project onto an image into a set of landmarks with known locations.

Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later classification.

In statistics, the k-nearest neighbors algorithm (k-NN) is a non-parametric supervised learning method first developed by Evelyn Fix and Joseph Hodges in 1951, and later expanded by Thomas Cover. It is used for classification and regression. In both cases, the input consists of the k closest training examples in a data set. The output depends on whether k-NN is used for classification or regression:

ID/LP Grammars are a subset of Phrase Structure Grammars, differentiated from other formal grammars by distinguishing between immediate dominance (ID) and linear precedence (LP) constraints. Whereas traditional phrase structure rules incorporate dominance and precedence into a single rule, ID/LP Grammars maintains separate rule sets which need not be processed simultaneously. ID/LP Grammars are used in Computational Linguistics.

<span class="mw-page-title-main">Scoring rule</span> Measure for evaluating probabilistic forecasts

In decision theory, a scoring rule provides a summary measure for the evaluation of probabilistic predictions or forecasts. It is applicable to tasks in which predictions assign probabilities to events, i.e. one issues a probability distribution as prediction. This includes probabilistic classification of a set of mutually exclusive outcomes or classes.

<span class="mw-page-title-main">Causal model</span> Conceptual model in philosophy of science

In the philosophy of science, a causal model is a conceptual model that describes the causal mechanisms of a system. Several types of causal notation may be used in the development of a causal model. Causal models can improve study designs by providing clear rules for deciding which independent variables need to be included/controlled for.

GSP algorithm is an algorithm used for sequence mining. The algorithms for solving sequence mining problems are mostly based on the apriori (level-wise) algorithm. One way to use the level-wise paradigm is to first discover all the frequent items in a level-wise fashion. It simply means counting the occurrences of all singleton elements in the database. Then, the transactions are filtered by removing the non-frequent items. At the end of this step, each transaction consists of only the frequent elements it originally contained. This modified database becomes an input to the GSP algorithm. This process requires one pass over the whole database.

In data mining and association rule learning, lift is a measure of the performance of a targeting model at predicting or classifying cases as having an enhanced response, measured against a random choice targeting model. A targeting model is doing a good job if the response within the target is much better than the baseline average for the population as a whole. Lift is simply the ratio of these values: target response divided by average response. Mathematically,

Mean shift is a non-parametric feature-space mathematical analysis technique for locating the maxima of a density function, a so-called mode-seeking algorithm. Application domains include cluster analysis in computer vision and image processing.

<span class="mw-page-title-main">Affinity analysis</span> Market research and business management technique

Affinity analysis falls under the umbrella term of data mining which uncovers meaningful correlations between different entities according to their co-occurrence in a data set. In almost all systems and processes, the application of affinity analysis can extract significant knowledge about the unexpected trends. In fact, affinity analysis takes advantages of studying attributes that go together which helps uncover the hidden pattens in a big data through generating association rules. Association rules mining procedure is two-fold: first, it finds all frequent attributes in a data set and, then generates association rules satisfying some predefined criteria, support and confidence, to identify the most important relationships in the frequent itemset. The first step in the process is to count the co-occurrence of attributes in the data set. Next, a subset is created called the frequent itemset. The association rules mining takes the form of if a condition or feature (A) is present then another condition or feature (B) exists. The first condition or feature (A) is called antecedent and the latter (B) is known as consequent. This process is repeated until no additional frequent itemsets are found. There are two important metrics for performing the association rules mining technique: support and confidence. Also, a priori algorithm is used to reduce the search space for the problem.

In computer science, streaming algorithms are algorithms for processing data streams in which the input is presented as a sequence of items and can be examined in only a few passes, typically just one. These algorithms are designed to operate with limited memory, generally logarithmic in the size of the stream and/or in the maximum value in the stream, and may also have limited processing time per item.

Contrast set learning is a form of association rule learning that seeks to identify meaningful differences between separate groups by reverse-engineering the key predictors that identify for each particular group. For example, given a set of attributes for a pool of students, a contrast set learner would identify the contrasting features between students seeking bachelor's degrees and those working toward PhD degrees.

In computer science, frequent subtree mining is the problem of finding all patterns in a given database whose support is over a given threshold. It is a more general form of the maximum agreement subtree problem.

Frequent pattern discovery is part of knowledge discovery in databases, Massive Online Analysis, and data mining; it describes the task of finding the most frequent and relevant patterns in large datasets. The concept was first introduced for mining transaction databases. Frequent patterns are defined as subsets that appear in a data set with frequency no less than a user-specified or auto-determined threshold.

References

  1. Piatetsky-Shapiro, Gregory (1991), Discovery, analysis, and presentation of strong rules, in Piatetsky-Shapiro, Gregory; and Frawley, William J.; eds., Knowledge Discovery in Databases, AAAI/MIT Press, Cambridge, MA.
  2. 1 2 3 4 5 6 Agrawal, R.; Imieliński, T.; Swami, A. (1993). "Mining association rules between sets of items in large databases". Proceedings of the 1993 ACM SIGMOD international conference on Management of data - SIGMOD '93. p. 207. CiteSeerX   10.1.1.40.6984 . doi:10.1145/170035.170072. ISBN   978-0897915922. S2CID   490415.
  3. Garcia, Enrique (2007). "Drawbacks and solutions of applying association rule mining in learning management systems" (PDF). Sci2s. Archived (PDF) from the original on 2009-12-23.
  4. "Data Mining Techniques: Top 5 to Consider". Precisely. 2021-11-08. Retrieved 2021-12-10.
  5. 1 2 3 "16 Data Mining Techniques: The Complete List - Talend". Talend - A Leader in Data Integration & Data Integrity. Retrieved 2021-12-10.
  6. "What are Association Rules in Data Mining (Association Rule Mining)?". SearchBusinessAnalytics. Retrieved 2021-12-10.
  7. "Drawbacks and solutions of applying association rule mining in learning management systems". ResearchGate. Retrieved 2021-12-10.
  8. Tan, Pang-Ning; Michael, Steinbach; Kumar, Vipin (2005). "Chapter 6. Association Analysis: Basic Concepts and Algorithms" (PDF). Introduction to Data Mining. Addison-Wesley. ISBN   978-0-321-32136-7.
  9. Jian Pei; Jiawei Han; Lakshmanan, L.V.S. (2001). "Mining frequent itemsets with convertible constraints". Proceedings 17th International Conference on Data Engineering. pp. 433–442. CiteSeerX   10.1.1.205.2150 . doi:10.1109/ICDE.2001.914856. ISBN   978-0-7695-1001-9. S2CID   1080975.
  10. Agrawal, Rakesh; and Srikant, Ramakrishnan; Fast algorithms for mining association rules in large databases Archived 2015-02-25 at the Wayback Machine , in Bocca, Jorge B.; Jarke, Matthias; and Zaniolo, Carlo; editors, Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), Santiago, Chile, September 1994, pages 487-499
  11. 1 2 Zaki, M. J. (2000). "Scalable algorithms for association mining". IEEE Transactions on Knowledge and Data Engineering. 12 (3): 372–390. CiteSeerX   10.1.1.79.9448 . doi:10.1109/69.846291.
  12. 1 2 Larose, Daniel T.; Larose, Chantal D. (2014-06-23). Discovering Knowledge in Data. doi:10.1002/9781118874059. ISBN   9781118874059.
  13. 1 2 3 Hahsler, Michael (2005). "Introduction to arules – A computational environment for mining association rules and frequent item sets" (PDF). Journal of Statistical Software. doi: 10.18637/jss.v014.i15 . Archived from the original (PDF) on 2019-04-30. Retrieved 2016-03-18.
  14. Wong, Pak (1999). "Visualizing Association Rules for Text Mining" (PDF). BSTU Laboratory of Artificial Neural Networks. Archived (PDF) from the original on 2021-11-29.
  15. Hipp, J.; Güntzer, U.; Nakhaeizadeh, G. (2000). "Algorithms for association rule mining --- a general survey and comparison". ACM SIGKDD Explorations Newsletter. 2: 58–64. CiteSeerX   10.1.1.38.5305 . doi:10.1145/360402.360421. S2CID   9248096.
  16. Brin, Sergey; Motwani, Rajeev; Ullman, Jeffrey D.; Tsur, Shalom (1997). "Dynamic itemset counting and implication rules for market basket data". Proceedings of the 1997 ACM SIGMOD international conference on Management of data - SIGMOD '97. pp. 255–264. CiteSeerX   10.1.1.41.6476 . doi:10.1145/253260.253325. ISBN   978-0897919111. S2CID   15385590.
  17. Omiecinski, E.R. (2003). "Alternative interest measures for mining associations in databases". IEEE Transactions on Knowledge and Data Engineering. 15: 57–69. CiteSeerX   10.1.1.329.5344 . doi:10.1109/TKDE.2003.1161582. S2CID   18364249.
  18. Aggarwal, Charu C.; Yu, Philip S. (1998). "A new framework for itemset generation". Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems - PODS '98. pp. 18–24. CiteSeerX   10.1.1.24.714 . doi:10.1145/275487.275490. ISBN   978-0897919968. S2CID   11934586.
  19. Piatetsky-Shapiro, Gregory; Discovery, analysis, and presentation of strong rules, Knowledge Discovery in Databases, 1991, pp. 229-248
  20. Tan, Pang-Ning; Kumar, Vipin; Srivastava, Jaideep (2004). "Selecting the right objective measure for association analysis". Information Systems. 29 (4): 293–313. CiteSeerX   10.1.1.331.4740 . doi:10.1016/S0306-4379(03)00072-3.
  21. Michael Hahsler (2015). A Probabilistic Comparison of Commonly Used Interest Measures for Association Rules. https://mhahsler.github.io/arules/docs/measures
  22. Hájek, P.; Havel, I.; Chytil, M. (1966). "The GUHA method of automatic hypotheses determination". Computing. 1 (4): 293–308. doi:10.1007/BF02345483. S2CID   10511114.
  23. Hájek, Petr; Rauch, Jan; Coufal, David; Feglar, Tomáš (2004). "The GUHA Method, Data Preprocessing and Mining". Database Support for Data Mining Applications. Lecture Notes in Computer Science. Vol. 2682. pp. 135–153. doi:10.1007/978-3-540-44497-8_7. ISBN   978-3-540-22479-2.
  24. Webb, Geoffrey (1989). "A Machine Learning Approach to Student Modelling". Proceedings of the Third Australian Joint Conference on Artificial Intelligence (AI 89): 195–205.
  25. Webb, Geoffrey I. (2007). "Discovering Significant Patterns". Machine Learning. 68: 1–33. doi: 10.1007/s10994-007-5006-x .
  26. Gionis, Aristides; Mannila, Heikki; Mielikäinen, Taneli; Tsaparas, Panayiotis (2007). "Assessing data mining results via swap randomization". ACM Transactions on Knowledge Discovery from Data. 1 (3): 14–es. CiteSeerX   10.1.1.141.2607 . doi:10.1145/1297332.1297338. S2CID   52305658.
  27. Heaton, Jeff (2017-01-30). "Comparing Dataset Characteristics that Favor the Apriori, Eclat or FP-Growth Frequent Itemset Mining Algorithms". arXiv: 1701.09042 [cs.DB].
  28. Zaki, Mohammed Javeed; Parthasarathy, Srinivasan; Ogihara, Mitsunori; Li, Wei (1997). "New Algorithms for Fast Discovery of Association Rules": 283–286. CiteSeerX   10.1.1.42.3283 . hdl:1802/501.{{cite journal}}: Cite journal requires |journal= (help)
  29. Zaki, Mohammed J.; Parthasarathy, Srinivasan; Ogihara, Mitsunori; Li, Wei (1997). "Parallel Algorithms for Discovery of Association Rules". Data Mining and Knowledge Discovery. 1 (4): 343–373. doi:10.1023/A:1009773317876. S2CID   10038675.
  30. Han (2000). "Mining frequent patterns without candidate generation". Proceedings of the 2000 ACM SIGMOD international conference on Management of data. Vol. SIGMOD '00. pp. 1–12. CiteSeerX   10.1.1.40.4436 . doi:10.1145/342009.335372. ISBN   978-1581132175. S2CID   6059661.
  31. Witten, Frank, Hall: Data mining practical machine learning tools and techniques, 3rd edition[ page needed ]
  32. Hájek, Petr; Havránek, Tomáš (1978). Mechanizing Hypothesis Formation: Mathematical Foundations for a General Theory. Springer-Verlag. ISBN   978-3-540-08738-0.
  33. 1 2 Webb, Geoffrey I. (1995); OPUS: An Efficient Admissible Algorithm for Unordered Search, Journal of Artificial Intelligence Research 3, Menlo Park, CA: AAAI Press, pp. 431-465 online access
  34. Bayardo, Roberto J. Jr.; Agrawal, Rakesh; Gunopulos, Dimitrios (2000). "Constraint-based rule mining in large, dense databases". Data Mining and Knowledge Discovery. 4 (2): 217–240. doi:10.1023/A:1009895914772. S2CID   5120441.
  35. Webb, Geoffrey I. (2000). "Efficient search for association rules". Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '00. pp. 99–107. CiteSeerX   10.1.1.33.1309 . doi:10.1145/347090.347112. ISBN   978-1581132335. S2CID   5444097.
  36. 1 2 "DSS News: Vol. 3, No. 23".
  37. Ramezani, Reza, Mohamad Saraee, and Mohammad Ali Nematbakhsh; MRAR: Mining Multi-Relation Association Rules, Journal of Computing and Security, 1, no. 2 (2014)
  38. GI Webb and S. Butler and D. Newlands (2003). On Detecting Differences Between Groups. KDD'03 Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  39. Menzies, T.; Ying Hu (2003). "Computing practices - Data mining for very busy people". Computer. 36 (11): 22–29. doi:10.1109/MC.2003.1244531.
  40. Wong, A.K.C.; Yang Wang (1997). "High-order pattern discovery from discrete-valued data". IEEE Transactions on Knowledge and Data Engineering. 9 (6): 877–893. CiteSeerX   10.1.1.189.1704 . doi:10.1109/69.649314.
  41. Liu, Jinze; Paulsen, Susan; Sun, Xing; Wang, Wei; Nobel, Andrew; Prins, Jan (2006). "Mining Approximate Frequent Itemsets in the Presence of Noise: Algorithm and Analysis". Proceedings of the 2006 SIAM International Conference on Data Mining. pp. 407–418. CiteSeerX   10.1.1.215.3599 . doi:10.1137/1.9781611972764.36. ISBN   978-0-89871-611-5.
  42. Zaki, Mohammed J. (2001); SPADE: An Efficient Algorithm for Mining Frequent Sequences, Machine Learning Journal, 42, pp. 31–60
  43. Zimek, Arthur; Assent, Ira; Vreeken, Jilles (2014). Frequent Pattern Mining. pp. 403–423. doi:10.1007/978-3-319-07821-2_16. ISBN   978-3-319-07820-5.
  44. King, R. D.; Srinivasan, A.; Dehaspe, L. (Feb 2001). "Warmr: a data mining tool for chemical data". J Comput Aided Mol Des. 15 (2): 173–81. Bibcode:2001JCAMD..15..173K. doi:10.1023/A:1008171016861. PMID   11272703. S2CID   3055046.

Bibliographies