This article may be too technical for most readers to understand.(September 2023) |
Part of a series on |
Machine learning and data mining |
---|
In machine learning (ML), boosting is an ensemble metaheuristic for primarily reducing bias (as opposed to variance). [1] It can also improve the stability and accuracy of ML classification and regression algorithms. Hence, it is prevalent in supervised learning for converting weak learners to strong learners. [2]
The concept of boosting is based on the question posed by Kearns and Valiant (1988, 1989): [3] [4] "Can a set of weak learners create a single strong learner?" A weak learner is defined as a classifier that is only slightly correlated with the true classification. A strong learner is a classifier that is arbitrarily well-correlated with the true classification. Robert Schapire answered the question in the affirmative in a paper published in 1990. [5] This has had significant ramifications in machine learning and statistics, most notably leading to the development of boosting. [6]
Initially, the hypothesis boosting problem simply referred to the process of turning a weak learner into a strong learner. [3] Algorithms that achieve this quickly became known as "boosting". Freund and Schapire's arcing (Adapt[at]ive Resampling and Combining), [7] as a general technique, is more or less synonymous with boosting. [8]
While boosting is not algorithmically constrained, most boosting algorithms consist of iteratively learning weak classifiers with respect to a distribution and adding them to a final strong classifier. When they are added, they are weighted in a way that is related to the weak learners' accuracy. After a weak learner is added, the data weights are readjusted, known as "re-weighting". Misclassified input data gain a higher weight and examples that are classified correctly lose weight. [note 1] Thus, future weak learners focus more on the examples that previous weak learners misclassified.
There are many boosting algorithms. The original ones, proposed by Robert Schapire (a recursive majority gate formulation), [5] and Yoav Freund (boost by majority), [9] were not adaptive and could not take full advantage of the weak learners. Schapire and Freund then developed AdaBoost, an adaptive boosting algorithm that won the prestigious Gödel Prize.
Only algorithms that are provable boosting algorithms in the probably approximately correct learning formulation can accurately be called boosting algorithms. Other algorithms that are similar in spirit[ clarification needed ] to boosting algorithms are sometimes called "leveraging algorithms", although they are also sometimes incorrectly called boosting algorithms. [9]
The main variation between many boosting algorithms is their method of weighting training data points and hypotheses. AdaBoost is very popular and the most significant historically as it was the first algorithm that could adapt to the weak learners. It is often the basis of introductory coverage of boosting in university machine learning courses. [10] There are many more recent algorithms such as LPBoost, TotalBoost, BrownBoost, xgboost, MadaBoost, LogitBoost, and others. Many boosting algorithms fit into the AnyBoost framework, [9] which shows that boosting performs gradient descent in a function space using a convex cost function.
Given images containing various known objects in the world, a classifier can be learned from them to automatically classify the objects in future images. Simple classifiers built based on some image feature of the object tend to be weak in categorization performance. Using boosting methods for object categorization is a way to unify the weak classifiers in a special way to boost the overall ability of categorization.[ citation needed ]
Object categorization is a typical task of computer vision that involves determining whether or not an image contains some specific category of object. The idea is closely related with recognition, identification, and detection. Appearance based object categorization typically contains feature extraction, learning a classifier, and applying the classifier to new examples. There are many ways to represent a category of objects, e.g. from shape analysis, bag of words models, or local descriptors such as SIFT, etc. Examples of supervised classifiers are Naive Bayes classifiers, support vector machines, mixtures of Gaussians, and neural networks. However, research[ which? ] has shown that object categories and their locations in images can be discovered in an unsupervised manner as well. [11]
The recognition of object categories in images is a challenging problem in computer vision, especially when the number of categories is large. This is due to high intra class variability and the need for generalization across variations of objects within the same category. Objects within one category may look quite different. Even the same object may appear unalike under different viewpoint, scale, and illumination. Background clutter and partial occlusion add difficulties to recognition as well. [12] Humans are able to recognize thousands of object types, whereas most of the existing object recognition systems are trained to recognize only a few,[ quantify ] e.g. human faces, cars, simple objects, etc. [13] [ needs update? ] Research has been very active on dealing with more categories and enabling incremental additions of new categories, and although the general problem remains unsolved, several multi-category objects detectors (for up to hundreds or thousands of categories [14] ) have been developed. One means is by feature sharing and boosting.
AdaBoost can be used for face detection as an example of binary categorization. The two categories are faces versus background. The general algorithm is as follows:
After boosting, a classifier constructed from 200 features could yield a 95% detection rate under a false positive rate. [15]
Another application of boosting for binary categorization is a system that detects pedestrians using patterns of motion and appearance. [16] This work is the first to combine both motion information and appearance information as features to detect a walking person. It takes a similar approach to the Viola-Jones object detection framework.
Compared with binary categorization, multi-class categorization looks for common features that can be shared across the categories at the same time. They turn to be more generic edge like features. During learning, the detectors for each category can be trained jointly. Compared with training separately, it generalizes better, needs less training data, and requires fewer features to achieve the same performance.
The main flow of the algorithm is similar to the binary case. What is different is that a measure of the joint training error shall be defined in advance. During each iteration the algorithm chooses a classifier of a single feature (features that can be shared by more categories shall be encouraged). This can be done via converting multi-class classification into a binary one (a set of categories versus the rest), [17] or by introducing a penalty error from the categories that do not have the feature of the classifier. [18]
In the paper "Sharing visual features for multiclass and multiview object detection", A. Torralba et al. used GentleBoost for boosting and showed that when training data is limited, learning via sharing features does a much better job than no sharing, given same boosting rounds. Also, for a given performance level, the total number of features required (and therefore the run time cost of the classifier) for the feature sharing detectors, is observed to scale approximately logarithmically with the number of class, i.e., slower than linear growth in the non-sharing case. Similar results are shown in the paper "Incremental learning of object detectors using a visual shape alphabet", yet the authors used AdaBoost for boosting.
Boosting algorithms can be based on convex or non-convex optimization algorithms. Convex algorithms, such as AdaBoost and LogitBoost, can be "defeated" by random noise such that they can't learn basic and learnable combinations of weak hypotheses. [19] [20] This limitation was pointed out by Long & Servedio in 2008. However, by 2009, multiple authors demonstrated that boosting algorithms based on non-convex optimization, such as BrownBoost, can learn from noisy datasets and can specifically learn the underlying classifier of the Long–Servedio dataset.
Bootstrap aggregating, also called bagging or bootstrapping, is a machine learning (ML) ensemble meta-algorithm designed to improve the stability and accuracy of ML classification and regression algorithms. It also reduces variance and overfitting. Although it is usually applied to decision tree methods, it can be used with any type of method. Bagging is a special case of the ensemble averaging approach.
AdaBoost is a statistical classification meta-algorithm formulated by Yoav Freund and Robert Schapire in 1995, who won the 2003 Gödel Prize for their work. It can be used in conjunction with many types of learning algorithm to improve performance. The output of multiple weak learners is combined into a weighted sum that represents the final output of the boosted classifier. Usually, AdaBoost is presented for binary classification, although it can be generalized to multiple classes or bounded intervals of real values.
Yoav Freund is an Israeli professor of computer science at the University of California San Diego who mainly works on machine learning, probability theory and related fields and applications.
A decision stump is a machine learning model consisting of a one-level decision tree. That is, it is a decision tree with one internal node which is immediately connected to the terminal nodes. A decision stump makes a prediction based on the value of just a single input feature. Sometimes they are also called 1-rules.
BrownBoost is a boosting algorithm that may be robust to noisy datasets. BrownBoost is an adaptive version of the boost by majority algorithm. As is the case for all boosting algorithms, BrownBoost is used in conjunction with other machine learning methods. BrownBoost was introduced by Yoav Freund in 2001.
Haar-like features are digital image features used in object recognition. They owe their name to their intuitive similarity with Haar wavelets and were used in the first real-time face detector.
Robert Elias Schapire is an American computer scientist renowned for his contributions to machine learning theory and its applications. He was formerly a computer science professor at Princeton University before joining Microsoft Research. His research focuses on theoretical and applied machine learning, with particular emphasis on ensemble learning.
In computer vision, the bag-of-words model sometimes called bag-of-visual-words model can be applied to image classification or retrieval, by treating image features as words. In document classification, a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary. In computer vision, a bag of visual words is a vector of occurrence counts of a vocabulary of local image features.
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes.
One-shot learning is an object categorization problem, found mostly in computer vision. Whereas most machine learning-based object categorization algorithms require training on hundreds or thousands of examples, one-shot learning aims to classify objects from one, or only a few, examples. The term few-shot learning is also used for these problems, especially when more than one example is needed.
In computer vision, the problem of object categorization from image search is the problem of training a classifier to recognize categories of objects, using only the images retrieved automatically with an Internet search engine. Ideally, automatic image collection would allow classifiers to be trained with nothing but the category names as input. This problem is closely related to that of content-based image retrieval (CBIR), where the goal is to return better image search results rather than training a classifier for image recognition.
In machine learning (ML), a margin classifier is a type of classification model which is able to give an associated distance from the decision boundary for each data sample. For instance, if a linear classifier is used, the distance of a sample from the separating hyperplane is the margin of that sample.
In machine learning and computational learning theory, LogitBoost is a boosting algorithm formulated by Jerome Friedman, Trevor Hastie, and Robert Tibshirani.
Cascading is a particular case of ensemble learning based on the concatenation of several classifiers, using all information collected from the output from a given classifier as additional information for the next classifier in the cascade. Unlike voting or stacking ensembles, which are multiexpert systems, cascading is a multistage one.
In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
CoBoost is a semi-supervised training algorithm proposed by Collins and Singer in 1999. The original application for the algorithm was the task of named-entity recognition using very weak learners, but it can be used for performing semi-supervised learning in cases where data features may be redundant.
In machine learning, the kernel perceptron is a variant of the popular perceptron learning algorithm that can learn kernel machines, i.e. non-linear classifiers that employ a kernel function to compute the similarity of unseen samples to training samples. The algorithm was invented in 1964, making it the first kernel classification learner.
Michael Justin Kearns is an American computer scientist, professor and National Center Chair at the University of Pennsylvania, the founding director of Penn's Singh Program in Networked & Social Systems Engineering (NETS), the founding director of Warren Center for Network and Data Sciences, and also holds secondary appointments in Penn's Wharton School and department of Economics. He is a leading researcher in computational learning theory and algorithmic game theory, and interested in machine learning, artificial intelligence, computational finance, algorithmic trading, computational social science and social networks. He previously led the Advisory and Research function in Morgan Stanley's Artificial Intelligence Center of Excellence team, and is currently an Amazon Scholar within Amazon Web Services.
Integral Channel Features (ICF), also known as ChnFtrs, is a method for object detection in computer vision. It uses integral images to extract features such as local sums, histograms and Haar-like features from multiple registered image channels. This method was highly exploited by Dollár et al. in their work for pedestrian detection, that was first described at the BMVC in 2009.
The multiplicative weights update method is an algorithmic technique most commonly used for decision making and prediction, and also widely deployed in game theory and algorithm design. The simplest use case is the problem of prediction from expert advice, in which a decision maker needs to iteratively decide on an expert whose advice to follow. The method assigns initial weights to the experts, and updates these weights multiplicatively and iteratively according to the feedback of how well an expert performed: reducing it in case of poor performance, and increasing it otherwise. It was discovered repeatedly in very diverse fields such as machine learning, optimization, theoretical computer science, and game theory.
Arcing [Boosting] is more successful than bagging in variance reduction
The term boosting refers to a family of algorithms that are able to convert weak learners to strong learners
Schapire (1990) proved that boosting is possible. (Page 823)