Part of a series on |
Machine learning and data mining |
---|
This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Discuss the difference compared to scoring rules.(January 2024) |
In machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). [1] Given as the space of all possible inputs (usually ), and as the set of labels (possible outputs), a typical goal of classification algorithms is to find a function which best predicts a label for a given input . [2] However, because of incomplete information, noise in the measurement, or probabilistic components in the underlying process, it is possible for the same to generate different . [3] As a result, the goal of the learning problem is to minimize expected loss (also known as the risk), defined as
where is a given loss function, and is the probability density function of the process that generated the data, which can equivalently be written as
Within classification, several commonly used loss functions are written solely in terms of the product of the true label and the predicted label . Therefore, they can be defined as functions of only one variable , so that with a suitably chosen function . These are called margin-based loss functions. Choosing a margin-based loss function amounts to choosing . Selection of a loss function within this framework impacts the optimal which minimizes the expected risk, see empirical risk minimization.
In the case of binary classification, it is possible to simplify the calculation of expected risk from the integral specified above. Specifically,
The second equality follows from the properties described above. The third equality follows from the fact that 1 and −1 are the only possible values for , and the fourth because . The term within brackets is known as the conditional risk.
One can solve for the minimizer of by taking the functional derivative of the last equality with respect to and setting the derivative equal to 0. This will result in the following equation
where , which is also equivalent to setting the derivative of the conditional risk equal to zero.
Given the binary nature of classification, a natural selection for a loss function (assuming equal cost for false positives and false negatives) would be the 0-1 loss function (0–1 indicator function), which takes the value of 0 if the predicted classification equals that of the true class or a 1 if the predicted classification does not match the true class. This selection is modeled by
where indicates the Heaviside step function. However, this loss function is non-convex and non-smooth, and solving for the optimal solution is an NP-hard combinatorial optimization problem. [4] As a result, it is better to substitute loss function surrogates which are tractable for commonly used learning algorithms, as they have convenient properties such as being convex and smooth. In addition to their computational tractability, one can show that the solutions to the learning problem using these loss surrogates allow for the recovery of the actual solution to the original classification problem. [5] Some of these surrogates are described below.
In practice, the probability distribution is unknown. Consequently, utilizing a training set of independently and identically distributed sample points
drawn from the data sample space, one seeks to minimize empirical risk
as a proxy for expected risk. [3] (See statistical learning theory for a more detailed description.)
Utilizing Bayes' theorem, it can be shown that the optimal , i.e., the one that minimizes the expected risk associated with the zero-one loss, implements the Bayes optimal decision rule for a binary classification problem and is in the form of
A loss function is said to be classification-calibrated or Bayes consistent if its optimal is such that and is thus optimal under the Bayes decision rule. A Bayes consistent loss function allows us to find the Bayes optimal decision function by directly minimizing the expected risk and without having to explicitly model the probability density functions.
For convex margin loss , it can be shown that is Bayes consistent if and only if it is differentiable at 0 and . [6] [1] Yet, this result does not exclude the existence of non-convex Bayes consistent loss functions. A more general result states that Bayes consistent loss functions can be generated using the following formulation [7]
where is any invertible function such that and is any differentiable strictly concave function such that . Table-I shows the generated Bayes consistent loss functions for some example choices of and . Note that the Savage and Tangent loss are not convex. Such non-convex loss functions have been shown to be useful in dealing with outliers in classification. [7] [8] For all loss functions generated from (2), the posterior probability can be found using the invertible link function as . Such loss functions where the posterior probability can be recovered using the invertible link are called proper loss functions.
Loss name | ||||
---|---|---|---|---|
Exponential | ||||
Logistic | ||||
Square | ||||
Savage | ||||
Tangent |
The sole minimizer of the expected risk, , associated with the above generated loss functions can be directly found from equation (1) and shown to be equal to the corresponding . This holds even for the nonconvex loss functions, which means that gradient descent based algorithms such as gradient boosting can be used to construct the minimizer.
For proper loss functions, the loss margin can be defined as and shown to be directly related to the regularization properties of the classifier. [9] Specifically a loss function of larger margin increases regularization and produces better estimates of the posterior probability. For example, the loss margin can be increased for the logistic loss by introducing a parameter and writing the logistic loss as where smaller increases the margin of the loss. It is shown that this is directly equivalent to decreasing the learning rate in gradient boosting where decreasing improves the regularization of the boosted classifier. The theory makes it clear that when a learning rate of is used, the correct formula for retrieving the posterior probability is now .
In conclusion, by choosing a loss function with larger margin (smaller ) we increase regularization and improve our estimates of the posterior probability which in turn improves the ROC curve of the final classifier.
While more commonly used in regression, the square loss function can be re-written as a function and utilized for classification. It can be generated using (2) and Table-I as follows
The square loss function is both convex and smooth. However, the square loss function tends to penalize outliers excessively, leading to slower convergence rates (with regards to sample complexity) than for the logistic loss or hinge loss functions. [1] In addition, functions which yield high values of for some will perform poorly with the square loss function, since high values of will be penalized severely, regardless of whether the signs of and match.
A benefit of the square loss function is that its structure lends itself to easy cross validation of regularization parameters. Specifically for Tikhonov regularization, one can solve for the regularization parameter using leave-one-out cross-validation in the same time as it would take to solve a single problem. [10]
The minimizer of for the square loss function can be directly found from equation (1) as
The logistic loss function can be generated using (2) and Table-I as follows
The logistic loss is convex and grows linearly for negative values which make it less sensitive to outliers. The logistic loss is used in the LogitBoost algorithm.
The minimizer of for the logistic loss function can be directly found from equation (1) as
This function is undefined when or (tending toward ∞ and −∞ respectively), but predicts a smooth curve which grows when increases and equals 0 when . [3]
It's easy to check that the logistic loss and binary cross-entropy loss (Log loss) are in fact the same (up to a multiplicative constant ). The cross-entropy loss is closely related to the Kullback–Leibler divergence between the empirical distribution and the predicted distribution. The cross-entropy loss is ubiquitous in modern deep neural networks.
The exponential loss function can be generated using (2) and Table-I as follows
The exponential loss is convex and grows exponentially for negative values which makes it more sensitive to outliers. The exponentially-weighted 0-1 loss is used in the AdaBoost algorithm giving implicitly rise to the exponential loss.
The minimizer of for the exponential loss function can be directly found from equation (1) as
The Savage loss [7] can be generated using (2) and Table-I as follows
The Savage loss is quasi-convex and is bounded for large negative values which makes it less sensitive to outliers. The Savage loss has been used in gradient boosting and the SavageBoost algorithm.
The minimizer of for the Savage loss function can be directly found from equation (1) as
The Tangent loss [11] can be generated using (2) and Table-I as follows
The Tangent loss is quasi-convex and is bounded for large negative values which makes it less sensitive to outliers. Interestingly, the Tangent loss also assigns a bounded penalty to data points that have been classified "too correctly". This can help prevent over-training on the data set. The Tangent loss has been used in gradient boosting, the TangentBoost algorithm and Alternating Decision Forests. [12]
The minimizer of for the Tangent loss function can be directly found from equation (1) as
The hinge loss function is defined with , where is the positive part function.
The hinge loss provides a relatively tight, convex upper bound on the 0–1 indicator function. Specifically, the hinge loss equals the 0–1 indicator function when and . In addition, the empirical risk minimization of this loss is equivalent to the classical formulation for support vector machines (SVMs). Correctly classified points lying outside the margin boundaries of the support vectors are not penalized, whereas points within the margin boundaries or on the wrong side of the hyperplane are penalized in a linear fashion compared to their distance from the correct boundary. [4]
While the hinge loss function is both convex and continuous, it is not smooth (is not differentiable) at . Consequently, the hinge loss function cannot be used with gradient descent methods or stochastic gradient descent methods which rely on differentiability over the entire domain. However, the hinge loss does have a subgradient at , which allows for the utilization of subgradient descent methods. [4] SVMs utilizing the hinge loss function can also be solved using quadratic programming.
The minimizer of for the hinge loss function is
when , which matches that of the 0–1 indicator function. This conclusion makes the hinge loss quite attractive, as bounds can be placed on the difference between expected risk and the sign of hinge loss function. [1] The Hinge loss cannot be derived from (2) since is not invertible.
The generalized smooth hinge loss function with parameter is defined as
where
It is monotonically increasing and reaches 0 when .
In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other areas of physics, such as solid-state theory. Frank Wilczek wrote that the calculations that won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."
In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.
Vapnik–Chervonenkis theory was developed during 1960–1990 by Vladimir Vapnik and Alexey Chervonenkis. The theory is a form of computational learning theory, which attempts to explain the learning process from a statistical point of view.
In quantum field theory, partition functions are generating functionals for correlation functions, making them key objects of study in the path integral formalism. They are the imaginary time versions of statistical mechanics partition functions, giving rise to a close connection between these two areas of physics. Partition functions can rarely be solved for exactly, although free theories do admit such solutions. Instead, a perturbative approach is usually implemented, this being equivalent to summing over Feynman diagrams.
In physics, a first-class constraint is a dynamical quantity in a constrained Hamiltonian system whose Poisson bracket with all the other constraints vanishes on the constraint surface in phase space. To calculate the first-class constraint, one assumes that there are no second-class constraints, or that they have been calculated previously, and their Dirac brackets generated.
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.
In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.
In theoretical physics, a source is an abstract concept, developed by Julian Schwinger, motivated by the physical effects of surrounding particles involved in creating or destroying another particle. So, one can perceive sources as the origin of the physical properties carried by the created or destroyed particle, and thus one can use this concept to study all quantum processes including the spacetime localized properties and the energy forms, i.e., mass and momentum, of the phenomena. The probability amplitude of the created or the decaying particle is defined by the effect of the source on a localized spacetime region such that the affected particle captures its physics depending on the tensorial and spinorial nature of the source. An example that Julian Schwinger referred to is the creation of meson due to the mass correlations among five mesons.
In theoretical physics, background field method is a useful procedure to calculate the effective action of a quantum field theory by expanding a quantum field around a classical "background" value B:
In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.
In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.
In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.
Spinodal decomposition is a mechanism by which a single thermodynamic phase spontaneously separates into two phases. Decomposition occurs when there is no thermodynamic barrier to phase separation. As a result, phase separation via decomposition does not require the nucleation events resulting from thermodynamic fluctuations, which normally trigger phase separation.
Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.
In fluid dynamics, a Stokes wave is a nonlinear and periodic surface wave on an inviscid fluid layer of constant mean depth. This type of modelling has its origins in the mid 19th century when Sir George Stokes – using a perturbation series approach, now known as the Stokes expansion – obtained approximate solutions for nonlinear wave motion.
In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.
The uncertainty theory invented by Baoding Liu is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms.
In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean. The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling. It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression, semiparametric regression and functional data analysis. In parametric modeling, variance functions take on a parametric form and explicitly describe the relationship between the variance and the mean of a random quantity. In a non-parametric setting, the variance function is assumed to be a smooth function.
A polymer is a macromolecule, composed of many similar or identical repeated subunits. Polymers are common in, but not limited to, organic media. They range from familiar synthetic plastics to natural biopolymers such as DNA and proteins. Their unique elongated molecular structure produces unique physical properties, including toughness, viscoelasticity, and a tendency to form glasses and semicrystalline structures. The modern concept of polymers as covalently bonded macromolecular structures was proposed in 1920 by Hermann Staudinger. One sub-field in the study of polymers is polymer physics. As a part of soft matter studies, Polymer physics concerns itself with the study of mechanical properties and focuses on the perspective of condensed matter physics.