Variational autoencoder

Last updated

The basic scheme of a variational autoencoder. The model receives
x
{\displaystyle x}
as input. The encoder compresses it into the latent space. The decoder receives as input the information sampled from the latent space and produces
x
'
{\displaystyle {x'}}
as similar as possible to
x
{\displaystyle x}
. VAE Basic.png
The basic scheme of a variational autoencoder. The model receives as input. The encoder compresses it into the latent space. The decoder receives as input the information sampled from the latent space and produces as similar as possible to .

In machine learning, a variational autoencoder (VAE) is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling. [1] It is part of the families of probabilistic graphical models and variational Bayesian methods. [2]

Contents

In addition to being seen as an autoencoder neural network architecture, variational autoencoders can also be studied within the mathematical formulation of variational Bayesian methods, connecting a neural encoder network to its decoder through a probabilistic latent space (for example, as a multivariate Gaussian distribution) that corresponds to the parameters of a variational distribution.

Thus, the encoder maps each point (such as an image) from a large complex dataset into a distribution within the latent space, rather than to a single point in that space. The decoder has the opposite function, which is to map from the latent space to the input space, again according to a distribution (although in practice, noise is rarely added during the decoding stage). By mapping a point to a distribution instead of a single point, the network can avoid overfitting the training data. Both networks are typically trained together with the usage of the reparameterization trick, although the variance of the noise model can be learned separately.[ citation needed ]

Although this type of model was initially designed for unsupervised learning, [3] [4] its effectiveness has been proven for semi-supervised learning [5] [6] and supervised learning. [7]

Overview of architecture and operation

A variational autoencoder is a generative model with a prior and noise distribution respectively. Usually such models are trained using the expectation-maximization meta-algorithm (e.g. probabilistic PCA, (spike & slab) sparse coding). Such a scheme optimizes a lower bound of the data likelihood, which is usually intractable, and in doing so requires the discovery of q-distributions, or variational posteriors. These q-distributions are normally parameterized for each individual data point in a separate optimization process. However, variational autoencoders use a neural network as an amortized approach to jointly optimize across data points. This neural network takes as input the data points themselves, and outputs parameters for the variational distribution. As it maps from a known input space to the low-dimensional latent space, it is called the encoder.

The decoder is the second neural network of this model. It is a function that maps from the latent space to the input space, e.g. as the means of the noise distribution. It is possible to use another neural network that maps to the variance, however this can be omitted for simplicity. In such a case, the variance can be optimized with gradient descent.

To optimize this model, one needs to know two terms: the "reconstruction error", and the Kullback–Leibler divergence (KL-D). Both terms are derived from the free energy expression of the probabilistic model, and therefore differ depending on the noise distribution and the assumed prior of the data. For example, a standard VAE task such as IMAGENET is typically assumed to have a gaussianly distributed noise; however, tasks such as binarized MNIST require a Bernoulli noise. The KL-D from the free energy expression maximizes the probability mass of the q-distribution that overlaps with the p-distribution, which unfortunately can result in mode-seeking behaviour. The "reconstruction" term is the remainder of the free energy expression, and requires a sampling approximation to compute its expectation value. [8]

More recent approaches replace Kullback–Leibler divergence (KL-D) with various statistical distances, see see section "Statistical distance VAE variants" below..

Formulation

From the point of view of probabilistic modeling, one wants to maximize the likelihood of the data by their chosen parameterized probability distribution . This distribution is usually chosen to be a Gaussian which is parameterized by and respectively, and as a member of the exponential family it is easy to work with as a noise distribution. Simple distributions are easy enough to maximize, however distributions where a prior is assumed over the latents results in intractable integrals. Let us find via marginalizing over .

where represents the joint distribution under of the observable data and its latent representation or encoding . According to the chain rule, the equation can be rewritten as

In the vanilla variational autoencoder, is usually taken to be a finite-dimensional vector of real numbers, and to be a Gaussian distribution. Then is a mixture of Gaussian distributions.

It is now possible to define the set of the relationships between the input data and its latent representation as

Unfortunately, the computation of is expensive and in most cases intractable. To speed up the calculus to make it feasible, it is necessary to introduce a further function to approximate the posterior distribution as

with defined as the set of real values that parametrize . This is sometimes called amortized inference, since by "investing" in finding a good , one can later infer from quickly without doing any integrals.

In this way, the problem is to find a good probabilistic autoencoder, in which the conditional likelihood distribution is computed by the probabilistic decoder, and the approximated posterior distribution is computed by the probabilistic encoder.

Parametrize the encoder as , and the decoder as .

Evidence lower bound (ELBO)

As in every deep learning problem, it is necessary to define a differentiable loss function in order to update the network weights through backpropagation.

For variational autoencoders, the idea is to jointly optimize the generative model parameters to reduce the reconstruction error between the input and the output, and to make as close as possible to . As reconstruction loss, mean squared error and cross entropy are often used.

As distance loss between the two distributions the Kullback–Leibler divergence is a good choice to squeeze under . [8] [9]

The distance loss just defined is expanded as

Now define the evidence lower bound (ELBO):Maximizing the ELBOis equivalent to simultaneously maximizing and minimizing . That is, maximizing the log-likelihood of the observed data, and minimizing the divergence of the approximate posterior from the exact posterior .

The form given is not very convenient for maximization, but the following, equivalent form, is:where is implemented as , since that is, up to an additive constant, what yields. That is, we model the distribution of conditional on to be a Gaussian distribution centered on . The distribution of and are often also chosen to be Gaussians as and , with which we obtain by the formula for KL divergence of Gaussians:Here is the dimension of . For a more detailed derivation and more interpretations of ELBO and its maximization, see its main page.

Reparameterization

The scheme of the reparameterization trick. The randomness variable
e
{\displaystyle {\varepsilon }}
is injected into the latent space
z
{\displaystyle z}
as external input. In this way, it is possible to backpropagate the gradient without involving stochastic variable during the update. Reparameterization Trick.png
The scheme of the reparameterization trick. The randomness variable is injected into the latent space as external input. In this way, it is possible to backpropagate the gradient without involving stochastic variable during the update.

To efficiently search for the typical method is gradient ascent.

It is straightforward to findHowever, does not allow one to put the inside the expectation, since appears in the probability distribution itself. The reparameterization trick (also known as stochastic backpropagation [10] ) bypasses this difficulty. [8] [11] [12]

The most important example is when is normally distributed, as .

The scheme of a variational autoencoder after the reparameterization trick Reparameterized Variational Autoencoder.png
The scheme of a variational autoencoder after the reparameterization trick

This can be reparametrized by letting be a "standard random number generator", and construct as . Here, is obtained by the Cholesky decomposition:Then we haveand so we obtained an unbiased estimator of the gradient, allowing stochastic gradient descent.

Since we reparametrized , we need to find . Let be the probability density function for , then [ clarification needed ]where is the Jacobian matrix of with respect to . Since , this is

Variations

Many variational autoencoders applications and extensions have been used to adapt the architecture to other domains and improve its performance.

-VAE is an implementation with a weighted Kullback–Leibler divergence term to automatically discover and interpret factorised latent representations. With this implementation, it is possible to force manifold disentanglement for values greater than one. This architecture can discover disentangled latent factors without supervision. [13] [14]

The conditional VAE (CVAE), inserts label information in the latent space to force a deterministic constrained representation of the learned data. [15]

Some structures directly deal with the quality of the generated samples [16] [17] or implement more than one latent space to further improve the representation learning.

Some architectures mix VAE and generative adversarial networks to obtain hybrid models. [18] [19] [20]

Statistical distance VAE variants

After the initial work of Diederik P. Kingma and Max Welling. [21] several procedures were proposed to formulate in a more abstract way the operation of the VAE. In these approaches the loss function is composed of two parts :

We obtain the final formula for the loss:

The statistical distance requires special properties, for instance is has to be posses a formula as expectation because the loss function will need to be optimized by stochastic optimization algorithms. Several distances can be chosen and this gave rise to several flavors of VAEs:

See also

Related Research Articles

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. Theta functions are parametrized by points in a tube domain inside a complex Lagrangian Grassmannian, namely the Siegel upper half space.

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

Cylindrical multipole moments are the coefficients in a series expansion of a potential that varies logarithmically with the distance to a source, i.e., as . Such potentials arise in the electric potential of long line charges, and the analogous sources for the magnetic potential and gravitational potential.

<span class="mw-page-title-main">Autoencoder</span> Neural network that learns efficient data encoding in an unsupervised manner

An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data. An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation. The autoencoder learns an efficient representation (encoding) for a set of data, typically for dimensionality reduction, to generate lower-dimensional embeddings for subsequent use by other machine learning algorithms.

In mathematics, Weyl's lemma, named after Hermann Weyl, states that every weak solution of Laplace's equation is a smooth solution. This contrasts with the wave equation, for example, which has weak solutions that are not smooth solutions. Weyl's lemma is a special case of elliptic or hypoelliptic regularity.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

In quantum information theory, the Wehrl entropy, named after Alfred Wehrl, is a classical entropy of a quantum-mechanical density matrix. It is a type of quasi-entropy defined for the Husimi Q representation of the phase-space quasiprobability distribution. See for a comprehensive review of basic properties of classical, quantum and Wehrl entropies, and their implications in statistical mechanics.

In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean. The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling. It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression, semiparametric regression and functional data analysis. In parametric modeling, variance functions take on a parametric form and explicitly describe the relationship between the variance and the mean of a random quantity. In a non-parametric setting, the variance function is assumed to be a smooth function.

<span class="mw-page-title-main">Generative adversarial network</span> Deep learning method

A generative adversarial network (GAN) is a class of machine learning frameworks and a prominent framework for approaching generative artificial intelligence. The concept was initially developed by Ian Goodfellow and his colleagues in June 2014. In a GAN, two neural networks contest with each other in the form of a zero-sum game, where one agent's gain is another agent's loss.

In variational Bayesian methods, the evidence lower bound is a useful lower bound on the log-likelihood of some observed data.

<span class="mw-page-title-main">Transformer (deep learning architecture)</span> Deep learning architecture for modelling sequential data

A transformer is a deep learning architecture developed by researchers at Google and based on the multi-head attention mechanism, proposed in the 2017 paper "Attention Is All You Need". Text is converted to numerical representations called tokens, and each token is converted into a vector via lookup from a word embedding table. At each layer, each token is then contextualized within the scope of the context window with other (unmasked) tokens via a parallel multi-head attention mechanism, allowing the signal for key tokens to be amplified and less important tokens to be diminished.

An energy-based model (EBM) is an application of canonical ensemble formulation from statistical physics for learning from data. The approach prominently appears in generative artificial intelligence.

A Neural Network Gaussian Process (NNGP) is a Gaussian process (GP) obtained as the limit of a certain type of sequence of neural networks. Specifically, a wide variety of network architectures converges to a GP in the infinitely wide limit, in the sense of distribution. The concept constitutes an intensional definition, i.e., a NNGP is just a GP, but distinguished by how it is obtained.

A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.

A Stein discrepancy is a statistical divergence between two probability measures that is rooted in Stein's method. It was first formulated as a tool to assess the quality of Markov chain Monte Carlo samplers, but has since been used in diverse settings in statistics, machine learning and computer science.

In machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable generative models. A diffusion model consists of three major components: the forward process, the reverse process, and the sampling procedure. The goal of diffusion models is to learn a diffusion process for a given dataset, such that the process can generate new elements that are distributed similarly as the original dataset. A diffusion model models data as generated by a diffusion process, whereby a new datum performs a random walk with drift through the space of all possible data. A trained diffusion model can be sampled in many ways, with different efficiency and quality.

The reparameterization trick is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization. It allows for the efficient computation of gradients through random variables, enabling the optimization of parametric probability models using stochastic gradient descent, and the variance reduction of estimators.

References

  1. Kingma, Diederik P.; Welling, Max (2022-12-10). "Auto-Encoding Variational Bayes". arXiv: 1312.6114 [stat.ML].
  2. Pinheiro Cinelli, Lucas; et al. (2021). "Variational Autoencoder". Variational Methods for Machine Learning with Applications to Deep Networks. Springer. pp. 111–149. doi:10.1007/978-3-030-70679-1_5. ISBN   978-3-030-70681-4. S2CID   240802776.
  3. Dilokthanakul, Nat; Mediano, Pedro A. M.; Garnelo, Marta; Lee, Matthew C. H.; Salimbeni, Hugh; Arulkumaran, Kai; Shanahan, Murray (2017-01-13). "Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders". arXiv: 1611.02648 [cs.LG].
  4. Hsu, Wei-Ning; Zhang, Yu; Glass, James (December 2017). "Unsupervised domain adaptation for robust speech recognition via variational autoencoder-based data augmentation". 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). pp. 16–23. arXiv: 1707.06265 . doi:10.1109/ASRU.2017.8268911. ISBN   978-1-5090-4788-8. S2CID   22681625.
  5. Ehsan Abbasnejad, M.; Dick, Anthony; van den Hengel, Anton (2017). Infinite Variational Autoencoder for Semi-Supervised Learning. pp. 5888–5897.
  6. Xu, Weidi; Sun, Haoze; Deng, Chao; Tan, Ying (2017-02-12). "Variational Autoencoder for Semi-Supervised Text Classification". Proceedings of the AAAI Conference on Artificial Intelligence. 31 (1). doi: 10.1609/aaai.v31i1.10966 . S2CID   2060721.
  7. Kameoka, Hirokazu; Li, Li; Inoue, Shota; Makino, Shoji (2019-09-01). "Supervised Determined Source Separation with Multichannel Variational Autoencoder". Neural Computation. 31 (9): 1891–1914. doi:10.1162/neco_a_01217. PMID   31335290. S2CID   198168155.
  8. 1 2 3 Kingma, Diederik P.; Welling, Max (2013-12-20). "Auto-Encoding Variational Bayes". arXiv: 1312.6114 [stat.ML].
  9. "From Autoencoder to Beta-VAE". Lil'Log. 2018-08-12.
  10. Rezende, Danilo Jimenez; Mohamed, Shakir; Wierstra, Daan (2014-06-18). "Stochastic Backpropagation and Approximate Inference in Deep Generative Models". International Conference on Machine Learning. PMLR: 1278–1286. arXiv: 1401.4082 .
  11. Bengio, Yoshua; Courville, Aaron; Vincent, Pascal (2013). "Representation Learning: A Review and New Perspectives". IEEE Transactions on Pattern Analysis and Machine Intelligence. 35 (8): 1798–1828. arXiv: 1206.5538 . doi:10.1109/TPAMI.2013.50. ISSN   1939-3539. PMID   23787338. S2CID   393948.
  12. Kingma, Diederik P.; Rezende, Danilo J.; Mohamed, Shakir; Welling, Max (2014-10-31). "Semi-Supervised Learning with Deep Generative Models". arXiv: 1406.5298 [cs.LG].
  13. Higgins, Irina; Matthey, Loic; Pal, Arka; Burgess, Christopher; Glorot, Xavier; Botvinick, Matthew; Mohamed, Shakir; Lerchner, Alexander (2016-11-04). beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. NeurIPS.
  14. Burgess, Christopher P.; Higgins, Irina; Pal, Arka; Matthey, Loic; Watters, Nick; Desjardins, Guillaume; Lerchner, Alexander (2018-04-10). "Understanding disentangling in β-VAE". arXiv: 1804.03599 [stat.ML].
  15. Sohn, Kihyuk; Lee, Honglak; Yan, Xinchen (2015-01-01). Learning Structured Output Representation using Deep Conditional Generative Models (PDF). NeurIPS.
  16. Dai, Bin; Wipf, David (2019-10-30). "Diagnosing and Enhancing VAE Models". arXiv: 1903.05789 [cs.LG].
  17. Dorta, Garoe; Vicente, Sara; Agapito, Lourdes; Campbell, Neill D. F.; Simpson, Ivor (2018-07-31). "Training VAEs Under Structured Residuals". arXiv: 1804.01050 [stat.ML].
  18. Larsen, Anders Boesen Lindbo; Sønderby, Søren Kaae; Larochelle, Hugo; Winther, Ole (2016-06-11). "Autoencoding beyond pixels using a learned similarity metric". International Conference on Machine Learning. PMLR: 1558–1566. arXiv: 1512.09300 .
  19. Bao, Jianmin; Chen, Dong; Wen, Fang; Li, Houqiang; Hua, Gang (2017). "CVAE-GAN: Fine-Grained Image Generation Through Asymmetric Training". pp. 2745–2754. arXiv: 1703.10155 [cs.CV].
  20. Gao, Rui; Hou, Xingsong; Qin, Jie; Chen, Jiaxin; Liu, Li; Zhu, Fan; Zhang, Zhao; Shao, Ling (2020). "Zero-VAE-GAN: Generating Unseen Features for Generalized and Transductive Zero-Shot Learning". IEEE Transactions on Image Processing. 29: 3665–3680. Bibcode:2020ITIP...29.3665G. doi:10.1109/TIP.2020.2964429. ISSN   1941-0042. PMID   31940538. S2CID   210334032.
  21. Kingma, Diederik P.; Welling, Max (2022-12-10). "Auto-Encoding Variational Bayes". arXiv: 1312.6114 [stat.ML].
  22. Kolouri, Soheil; Pope, Phillip E.; Martin, Charles E.; Rohde, Gustavo K. (2019). "Sliced Wasserstein Auto-Encoders". International Conference on Learning Representations. International Conference on Learning Representations. ICPR.
  23. Turinici, Gabriel (2021). "Radon-Sobolev Variational Auto-Encoders". Neural Networks. 141: 294–305. arXiv: 1911.13135 . doi:10.1016/j.neunet.2021.04.018. ISSN   0893-6080. PMID   33933889.
  24. Gretton, A.; Li, Y.; Swersky, K.; Zemel, R.; Turner, R. (2017). "A Polya Contagion Model for Networks". IEEE Transactions on Control of Network Systems. 5 (4): 1998–2010. arXiv: 1705.02239 . doi:10.1109/TCNS.2017.2781467.
  25. Tolstikhin, I.; Bousquet, O.; Gelly, S.; Schölkopf, B. (2018). "Wasserstein Auto-Encoders". arXiv: 1711.01558 [stat.ML].
  26. Louizos, C.; Shi, X.; Swersky, K.; Li, Y.; Welling, M. (2019). "Kernelized Variational Autoencoders". arXiv: 1901.02401 [astro-ph.CO].

Further reading