Differentiable neural computer

Last updated
A differentiable neural computer being trained to store and recall dense binary numbers. Performance of a reference task during training shown. Upper left: the input (red) and target (blue), as 5-bit words and a 1 bit interrupt signal. Upper right: the model's output. DNC training recall task.gif
A differentiable neural computer being trained to store and recall dense binary numbers. Performance of a reference task during training shown. Upper left: the input (red) and target (blue), as 5-bit words and a 1 bit interrupt signal. Upper right: the model's output.

In artificial intelligence, a differentiable neural computer (DNC) is a memory augmented neural network architecture (MANN), which is typically (but not by definition) recurrent in its implementation. The model was published in 2016 by Alex Graves et al. of DeepMind. [1]

Contents

Applications

DNC indirectly takes inspiration from Von-Neumann architecture, making it likely to outperform conventional architectures in tasks that are fundamentally algorithmic that cannot be learned by finding a decision boundary.

So far, DNCs have been demonstrated to handle only relatively simple tasks, which can be solved using conventional programming. But DNCs don't need to be programmed for each problem, but can instead be trained. This attention span allows the user to feed complex data structures such as graphs sequentially, and recall them for later use. Furthermore, they can learn aspects of symbolic reasoning and apply it to working memory. The researchers who published the method see promise that DNCs can be trained to perform complex, structured tasks [1] [2] and address big-data applications that require some sort of reasoning, such as generating video commentaries or semantic text analysis. [3] [4]

DNC can be trained to navigate rapid transit systems, and apply that network to a different system. A neural network without memory would typically have to learn about each transit system from scratch. On graph traversal and sequence-processing tasks with supervised learning, DNCs performed better than alternatives such as long short-term memory or a neural turing machine. [5] With a reinforcement learning approach to a block puzzle problem inspired by SHRDLU, DNC was trained via curriculum learning, and learned to make a plan. It performed better than a traditional recurrent neural network. [5]

Architecture

DNC system diagram Differentiable Neural Computer.svg
DNC system diagram

DNC networks were introduced as an extension of the Neural Turing Machine (NTM), with the addition of memory attention mechanisms that control where the memory is stored, and temporal attention that records the order of events. This structure allows DNCs to be more robust and abstract than a NTM, and still perform tasks that have longer-term dependencies than some predecessors such as Long Short Term Memory (LSTM). The memory, which is simply a matrix, can be allocated dynamically and accessed indefinitely. The DNC is differentiable end-to-end (each subcomponent of the model is differentiable, therefore so is the whole model). This makes it possible to optimize them efficiently using gradient descent. [3] [6] [7]

The DNC model is similar to the Von Neumann architecture, and because of the resizability of memory, it is Turing complete. [8]

Traditional DNC

DNC, as originally published [1]

Independent variables
Input vector
Target vector
Controller
Controller input matrix


Deep (layered) LSTM
Input gate vector
Output gate vector
Forget gate vector
State gate vector,
Hidden gate vector,


DNC output vector
Read & Write heads
Interface parameters


Read heads
Read keys
Read strengths
Free gates
Read modes,


Write head
Write key
Write strength
Erase vector
Write vector
Allocation gate
Write gate
Memory
Memory matrix,
Matrix of ones
Usage vector
Precedence weighting,
Temporal link matrix,
Write weighting
Read weighting
Read vectors


Content-based addressing,
Lookup key , key strength
Indices of ,
sorted in ascending order of usage
Allocation weighting
Write content weighting
Read content weighting
Forward weighting
Backward weighting
Memory retention vector
Definitions
Weight matrix, bias vector
Zeros matrix, ones matrix, identity matrix
Element-wise multiplication
Cosine similarity
Sigmoid function
Oneplus function
   for j = 1, ..., K. Softmax function

Extensions

Refinements include sparse memory addressing, which reduces time and space complexity by thousands of times. This can be achieved by using an approximate nearest neighbor algorithm, such as Locality-sensitive hashing, or a random k-d tree like Fast Library for Approximate Nearest Neighbors from UBC. [9] Adding Adaptive Computation Time (ACT) separates computation time from data time, which uses the fact that problem length and problem difficulty are not always the same. [10] Training using synthetic gradients performs considerably better than Backpropagation through time (BPTT). [11] Robustness can be improved with use of layer normalization and Bypass Dropout as regularization. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Neural network (machine learning)</span> Computational model used in machine learning, based on connected, hierarchical functions

In machine learning, a neural network is a model inspired by the structure and function of biological neural networks in animal brains.

<span class="mw-page-title-main">Jürgen Schmidhuber</span> German computer scientist

Jürgen Schmidhuber is a German computer scientist noted for his work in the field of artificial intelligence, specifically artificial neural networks. He is a scientific director of the Dalle Molle Institute for Artificial Intelligence Research in Switzerland. He is also director of the Artificial Intelligence Initiative and professor of the Computer Science program in the Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) division at the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia.

A cognitive architecture refers to both a theory about the structure of the human mind and to a computational instantiation of such a theory used in the fields of artificial intelligence (AI) and computational cognitive science. These formalized models can be used to further refine comprehensive theories of cognition and serve as the frameworks for useful artificial intelligence programs. Successful cognitive architectures include ACT-R and SOAR. The research on cognitive architectures as software instantiation of cognitive theories was initiated by Allen Newell in 1990.

Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.

Meta-learning is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing learning algorithms or to learn (induce) the learning algorithm itself, hence the alternative term learning to learn.

<span class="mw-page-title-main">Long short-term memory</span> Type of recurrent neural network architecture

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models, and other sequence learning methods. It aims to provide a short-term memory for RNN that can last thousands of timesteps. The name is made in analogy with long-term memory and short-term memory and their relationship, studied by cognitive psychologists since the early 20th century.

<span class="mw-page-title-main">Activation function</span> Artificial neural network node function

The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear. Modern activation functions include the smooth version of the ReLU, the GELU, which was used in the 2018 BERT model, the logistic (sigmoid) function used in the 2012 speech recognition model developed by Hinton et al, the ReLU used in the 2012 AlexNet computer vision model and in the 2015 ResNet model.

There are many types of artificial neural networks (ANN).

<span class="mw-page-title-main">Sepp Hochreiter</span> German computer scientist

Josef "Sepp" Hochreiter is a German computer scientist. Since 2018 he has led the Institute for Machine Learning at the Johannes Kepler University of Linz after having led the Institute of Bioinformatics from 2006 to 2018. In 2017 he became the head of the Linz Institute of Technology (LIT) AI Lab. Hochreiter is also a founding director of the Institute of Advanced Research in Artificial Intelligence (IARAI). Previously, he was at Technische Universität Berlin, at University of Colorado Boulder, and at the Technical University of Munich. He is a chair of the Critical Assessment of Massive Data Analysis (CAMDA) conference.

<span class="mw-page-title-main">Deep learning</span> Branch of machine learning

Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data. The adjective "deep" refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.

DeepMind Technologies Limited, also known by its trade name Google DeepMind, is a British-American artificial intelligence research laboratory which serves as a subsidiary of Google. Founded in the UK in 2010, it was acquired by Google in 2014 and merged with Google AI's Google Brain division to become Google DeepMind in April 2023. The company is based in London, with research centres in Canada, France, Germany, and the United States.

The Winograd schema challenge (WSC) is a test of machine intelligence proposed in 2012 by Hector Levesque, a computer scientist at the University of Toronto. Designed to be an improvement on the Turing test, it is a multiple-choice test that employs questions of a very specific structure: they are instances of what are called Winograd schemas, named after Terry Winograd, professor of computer science at Stanford University.

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence (AI), its subdisciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

A neural Turing machine (NTM) is a recurrent neural network model of a Turing machine. The approach was published by Alex Graves et al. in 2014. NTMs combine the fuzzy pattern matching capabilities of neural networks with the algorithmic power of programmable computers.

Alex Graves is a computer scientist and research scientist at DeepMind.

Connectionist temporal classification (CTC) is a type of neural network output and associated scoring function, for training recurrent neural networks (RNNs) such as LSTM networks to tackle sequence problems where the timing is variable. It can be used for tasks like on-line handwriting recognition or recognizing phonemes in speech audio. CTC refers to the outputs and scoring, and is independent of the underlying neural network structure. It was introduced in 2006.

In machine learning, the Highway Network was the first working very deep feedforward neural network with hundreds of layers, much deeper than previous neural networks. It uses skip connections modulated by learned gating mechanisms to regulate information flow, inspired by long short-term memory (LSTM) recurrent neural networks. The advantage of the Highway Network over other deep learning architectures is its ability to overcome or partially prevent the vanishing gradient problem, thus improving its optimization. Gating mechanisms are used to facilitate information flow across the many layers.

Deep reinforcement learning is a subfield of machine learning that combines reinforcement learning (RL) and deep learning. RL considers the problem of a computational agent learning to make decisions by trial and error. Deep RL incorporates deep learning into the solution, allowing agents to make decisions from unstructured input data without manual engineering of the state space. Deep RL algorithms are able to take in very large inputs and decide what actions to perform to optimize an objective. Deep reinforcement learning has been used for a diverse set of applications including but not limited to robotics, video games, natural language processing, computer vision, education, transportation, finance and healthcare.

Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks. Their creation was inspired by biological neural circuitry. While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. Little research was conducted on ANNs in the 1970s and 1980s, with the AAAI calling this period an "AI winter".

<span class="mw-page-title-main">Attention (machine learning)</span> Machine learning technique

Attention is a machine learning method that determines the relative importance of each component in a sequence relative to the other components in that sequence. In natural language processing, importance is represented by "soft" weights assigned to each word in a sentence. More generally, attention encodes vectors called token embeddings across a fixed-width sequence that can range from tens to millions of tokens in size.

References

  1. 1 2 3 Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago (2016-10-12). "Hybrid computing using a neural network with dynamic external memory". Nature. 538 (7626): 471–476. Bibcode:2016Natur.538..471G. doi:10.1038/nature20101. ISSN   1476-4687. PMID   27732574. S2CID   205251479.
  2. "Differentiable neural computers | DeepMind". DeepMind. 12 October 2016. Retrieved 2016-10-19.
  3. 1 2 Burgess, Matt. "DeepMind's AI learned to ride the London Underground using human-like reason and memory". WIRED UK. Retrieved 2016-10-19.
  4. Jaeger, Herbert (2016-10-12). "Artificial intelligence: Deep neural reasoning". Nature. 538 (7626): 467–468. Bibcode:2016Natur.538..467J. doi: 10.1038/nature19477 . ISSN   1476-4687. PMID   27732576.
  5. 1 2 James, Mike. "DeepMind's Differentiable Neural Network Thinks Deeply". www.i-programmer.info. Retrieved 2016-10-20.
  6. "DeepMind AI 'Learns' to Navigate London Tube". PCMAG. Retrieved 2016-10-19.
  7. Mannes, John (13 October 2016). "DeepMind's differentiable neural computer helps you navigate the subway with its memory". TechCrunch. Retrieved 2016-10-19.
  8. "RNN Symposium 2016: Alex Graves - Differentiable Neural Computer". YouTube . 22 March 2017.
  9. Jack W Rae; Jonathan J Hunt; Harley, Tim; Danihelka, Ivo; Senior, Andrew; Wayne, Greg; Graves, Alex; Timothy P Lillicrap (2016). "Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes". arXiv: 1610.09027 [cs.LG].
  10. Graves, Alex (2016). "Adaptive Computation Time for Recurrent Neural Networks". arXiv: 1603.08983 [cs.NE].
  11. Jaderberg, Max; Wojciech Marian Czarnecki; Osindero, Simon; Vinyals, Oriol; Graves, Alex; Silver, David; Kavukcuoglu, Koray (2016). "Decoupled Neural Interfaces using Synthetic Gradients". arXiv: 1608.05343 [cs.LG].
  12. Franke, Jörg; Niehues, Jan; Waibel, Alex (2018). "Robust and Scalable Differentiable Neural Computer for Question Answering". arXiv: 1807.02658 [cs.CL].