Word embedding

Last updated

In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis. Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1] Word embeddings can be obtained using language modeling and feature learning techniques, where words or phrases from the vocabulary are mapped to vectors of real numbers.

Contents

Methods to generate this mapping include neural networks, [2] dimensionality reduction on the word co-occurrence matrix, [3] [4] [5] probabilistic models, [6] explainable knowledge base method, [7] and explicit representation in terms of the context in which words appear. [8]

Word and phrase embeddings, when used as the underlying input representation, have been shown to boost the performance in NLP tasks such as syntactic parsing [9] and sentiment analysis. [10]

Development and history of the approach

In distributional semantics, a quantitative methodological approach for understanding meaning in observed language, word embeddings or semantic feature space models have been used as a knowledge representation for some time. [11] Such models aim to quantify and categorize semantic similarities between linguistic items based on their distributional properties in large samples of language data. The underlying idea that "a word is characterized by the company it keeps" was proposed in a 1957 article by John Rupert Firth, [12] but also has roots in the contemporaneous work on search systems [13] and in cognitive psychology. [14]

The notion of a semantic space with lexical items (words or multi-word terms) represented as vectors or embeddings is based on the computational challenges of capturing distributional characteristics and using them for practical application to measure similarity between words, phrases, or entire documents. The first generation of semantic space models is the vector space model for information retrieval. [15] [16] [17] Such vector space models for words and their distributional data implemented in their simplest form results in a very sparse vector space of high dimensionality (cf. curse of dimensionality). Reducing the number of dimensions using linear algebraic methods such as singular value decomposition then led to the introduction of latent semantic analysis in the late 1980s and the random indexing approach for collecting word co-occurrence contexts. [18] [19] [20] [21] In 2000, Bengio et al. provided in a series of papers titled "Neural probabilistic language models" to reduce the high dimensionality of word representations in contexts by "learning a distributed representation for words". [22] [23] [24]

A study published in NeurIPS (NIPS) 2002 introduced the use of both word and document embeddings applying the method of kernel CCA to bilingual (and multi-lingual) corpora, also providing an early example of self-supervised learning of word embeddings. [25]

Word embeddings come in two different styles, one in which words are expressed as vectors of co-occurring words, and another in which words are expressed as vectors of linguistic contexts in which the words occur; these different styles are studied in Lavelli et al., 2004. [26] Roweis and Saul published in Science how to use "locally linear embedding" (LLE) to discover representations of high dimensional data structures. [27] Most new word embedding techniques after about 2005 rely on a neural network architecture instead of more probabilistic and algebraic models, after foundational work done by Yoshua Bengio [28] [ circular reference ] and colleagues. [29] [30]

The approach has been adopted by many research groups after theoretical advances in 2010 had been made on the quality of vectors and the training speed of the model, as well as after hardware advances allowed for a broader parameter space to be explored profitably. In 2013, a team at Google led by Tomas Mikolov created word2vec, a word embedding toolkit that can train vector space models faster than previous approaches. The word2vec approach has been widely used in experimentation and was instrumental in raising interest for word embeddings as a technology, moving the research strand out of specialised research into broader experimentation and eventually paving the way for practical application. [31]

Polysemy and homonymy

Historically, one of the main limitations of static word embeddings or word vector space models is that words with multiple meanings are conflated into a single representation (a single vector in the semantic space). In other words, polysemy and homonymy are not handled properly. For example, in the sentence "The club I tried yesterday was great!", it is not clear if the term club is related to the word sense of a club sandwich , clubhouse , golf club , or any other sense that club might have. The necessity to accommodate multiple meanings per word in different vectors (multi-sense embeddings) is the motivation for several contributions in NLP to split single-sense embeddings into multi-sense ones. [32] [33]

Most approaches that produce multi-sense embeddings can be divided into two main categories for their word sense representation, i.e., unsupervised and knowledge-based. [34] Based on word2vec skip-gram, Multi-Sense Skip-Gram (MSSG) [35] performs word-sense discrimination and embedding simultaneously, improving its training time, while assuming a specific number of senses for each word. In the Non-Parametric Multi-Sense Skip-Gram (NP-MSSG) this number can vary depending on each word. Combining the prior knowledge of lexical databases (e.g., WordNet, ConceptNet, BabelNet), word embeddings and word sense disambiguation, Most Suitable Sense Annotation (MSSA) [36] labels word-senses through an unsupervised and knowledge-based approach, considering a word's context in a pre-defined sliding window. Once the words are disambiguated, they can be used in a standard word embeddings technique, so multi-sense embeddings are produced. MSSA architecture allows the disambiguation and annotation process to be performed recurrently in a self-improving manner. [37]

The use of multi-sense embeddings is known to improve performance in several NLP tasks, such as part-of-speech tagging, semantic relation identification, semantic relatedness, named entity recognition and sentiment analysis. [38] [39]

As of the late 2010s, contextually-meaningful embeddings such as ELMo and BERT have been developed. [40] Unlike static word embeddings, these embeddings are at the token-level, in that each occurrence of a word has its own embedding. These embeddings better reflect the multi-sense nature of words, because occurrences of a word in similar contexts are situated in similar regions of BERT’s embedding space. [41] [42]

For biological sequences: BioVectors

Word embeddings for n-grams in biological sequences (e.g. DNA, RNA, and Proteins) for bioinformatics applications have been proposed by Asgari and Mofrad. [43] Named bio-vectors (BioVec) to refer to biological sequences in general with protein-vectors (ProtVec) for proteins (amino-acid sequences) and gene-vectors (GeneVec) for gene sequences, this representation can be widely used in applications of deep learning in proteomics and genomics. The results presented by Asgari and Mofrad [43] suggest that BioVectors can characterize biological sequences in terms of biochemical and biophysical interpretations of the underlying patterns.

Game design

Word embeddings with applications in game design have been proposed by Rabii and Cook [44] as a way to discover emergent gameplay using logs of gameplay data. The process requires transcribing actions that occur during a game within a formal language and then using the resulting text to create word embeddings. The results presented by Rabii and Cook [44] suggest that the resulting vectors can capture expert knowledge about games like chess that are not explicitly stated in the game's rules.

Sentence embeddings

The idea has been extended to embeddings of entire sentences or even documents, e.g. in the form of the thought vectors concept. In 2015, some researchers suggested "skip-thought vectors" as a means to improve the quality of machine translation. [45] A more recent and popular approach for representing sentences is Sentence-BERT, or SentenceTransformers, which modifies pre-trained BERT with the use of siamese and triplet network structures. [46]

Software

Software for training and using word embeddings includes Tomáš Mikolov's Word2vec, Stanford University's GloVe, [47] GN-GloVe, [48] Flair embeddings, [38] AllenNLP's ELMo, [49] BERT, [50] fastText, Gensim, [51] Indra, [52] and Deeplearning4j. Principal Component Analysis (PCA) and T-Distributed Stochastic Neighbour Embedding (t-SNE) are both used to reduce the dimensionality of word vector spaces and visualize word embeddings and clusters. [53]

Examples of application

For instance, the fastText is also used to calculate word embeddings for text corpora in Sketch Engine that are available online. [54]

Ethical implications

Word embeddings may contain the biases and stereotypes contained in the trained dataset, as Bolukbasi et al. points out in the 2016 paper “Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings” that a publicly available (and popular) word2vec embedding trained on Google News texts (a commonly used data corpus), which consists of text written by professional journalists, still shows disproportionate word associations reflecting gender and racial biases when extracting word analogies. [55] For example, one of the analogies generated using the aforementioned word embedding is “man is to computer programmer as woman is to homemaker”. [56] [57]

Research done by Jieyu Zhou et al. shows that the applications of these trained word embeddings without careful oversight likely perpetuates existing bias in society, which is introduced through unaltered training data. Furthermore, word embeddings can even amplify these biases . [58] [59]

See also

Related Research Articles

Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence. It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics. Typically data is collected in text corpora, using either rule-based, statistical or neural-based approaches in machine learning and deep learning.

Word-sense disambiguation is the process of identifying which sense of a word is meant in a sentence or other segment of context. In human language processing and cognition, it is usually subconscious.

Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content as opposed to lexicographical similarity. These are mathematical tools used to estimate the strength of the semantic relationship between units of language, concepts or instances, through a numerical description obtained according to the comparison of information supporting their meaning or describing their nature. The term semantic similarity is often confused with semantic relatedness. Semantic relatedness includes any relation between two terms, while semantic similarity only includes "is a" relations. For example, "car" is similar to "bus", but is also related to "road" and "driving".

A language model is a probabilistic model of a natural language. In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.

The sequence between semantic related ordered words is classified as a lexical chain. A lexical chain is a sequence of related words in writing, spanning narrow or wide context window. A lexical chain is independent of the grammatical structure of the text and in effect it is a list of words that captures a portion of the cohesive structure of the text. A lexical chain can provide a context for the resolution of an ambiguous term and enable disambiguation of concepts that the term represents.

<span class="mw-page-title-main">Distributional semantics</span> Field of linguistics

Distributional semantics is a research area that develops and studies theories and methods for quantifying and categorizing semantic similarities between linguistic items based on their distributional properties in large samples of language data. The basic idea of distributional semantics can be summed up in the so-called distributional hypothesis: linguistic items with similar distributions have similar meanings.

<span class="mw-page-title-main">Feature learning</span> Set of learning techniques in machine learning

In machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.

Word2vec is a technique in natural language processing (NLP) for obtaining vector representations of words. These vectors capture information about the meaning of the word based on the surrounding words. The word2vec algorithm estimates these representations by modeling text in a large corpus. Once trained, such a model can detect synonymous words or suggest additional words for a partial sentence. Word2vec was developed by Tomáš Mikolov and colleagues at Google and published in 2013.

Neural machine translation (NMT) is an approach to machine translation that uses an artificial neural network to predict the likelihood of a sequence of words, typically modeling entire sentences in a single integrated model.

GloVe, coined from Global Vectors, is a model for distributed word representation. The model is an unsupervised learning algorithm for obtaining vector representations for words. This is achieved by mapping words into a meaningful space where the distance between words is related to semantic similarity. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space. As log-bilinear regression model for unsupervised learning of word representations, it combines the features of two model families, namely the global matrix factorization and local context window methods.

Semantic folding theory describes a procedure for encoding the semantics of natural language text in a semantically grounded binary representation. This approach provides a framework for modelling how language data is processed by the neocortex.

Semantic spaces in the natural language domain aim to create representations of natural language that are capable of capturing meaning. The original motivation for semantic spaces stems from two core challenges of natural language: Vocabulary mismatch and ambiguity of natural language.

<span class="mw-page-title-main">Semantic parsing</span>

Semantic parsing is the task of converting a natural language utterance to a logical form: a machine-understandable representation of its meaning. Semantic parsing can thus be understood as extracting the precise meaning of an utterance. Applications of semantic parsing include machine translation, question answering, ontology induction, automated reasoning, and code generation. The phrase was first used in the 1970s by Yorick Wilks as the basis for machine translation programs working with only semantic representations. Semantic parsing is one of the important tasks in computational linguistics and natural language processing.

Paraphrase or paraphrasing in computational linguistics is the natural language processing task of detecting and generating paraphrases. Applications of paraphrasing are varied including information retrieval, question answering, text summarization, and plagiarism detection. Paraphrasing is also useful in the evaluation of machine translation, as well as semantic parsing and generation of new samples to expand existing corpora.

In natural language processing, a sentence embedding refers to a numeric representation of a sentence in the form of a vector of real numbers which encodes meaningful semantic information.

Bidirectional encoder representations from transformers (BERT) is a language model introduced in October 2018 by researchers at Google. It learns to represent text as a sequence of vectors using self-supervised learning. It uses the encoder-only transformer architecture. It is notable for its dramatic improvement over previous state-of-the-art models, and as an early example of a large language model. As of 2020, BERT is a ubiquitous baseline in natural language processing (NLP) experiments.

A latent space, also known as a latent feature space or embedding space, is an embedding of a set of items within a manifold in which items resembling each other are positioned closer to one another. Position within the latent space can be viewed as being defined by a set of latent variables that emerge from the resemblances from the objects.

Self-supervised learning (SSL) is a paradigm in machine learning where a model is trained on a task using the data itself to generate supervisory signals, rather than relying on external labels provided by humans. In the context of neural networks, self-supervised learning aims to leverage inherent structures or relationships within the input data to create meaningful training signals. SSL tasks are designed so that solving it requires capturing essential features or relationships in the data. The input data is typically augmented or transformed in a way that creates pairs of related samples. One sample serves as the input, and the other is used to formulate the supervisory signal. This augmentation can involve introducing noise, cropping, rotation, or other transformations. Self-supervised learning more closely imitates the way humans learn to classify objects.

<span class="mw-page-title-main">Knowledge graph embedding</span> Dimensionality reduction of graph-based semantic data objects [machine learning task]

In representation learning, knowledge graph embedding (KGE), also referred to as knowledge representation learning (KRL), or multi-relation learning, is a machine learning task of learning a low-dimensional representation of a knowledge graph's entities and relations while preserving their semantic meaning. Leveraging their embedded representation, knowledge graphs (KGs) can be used for various applications such as link prediction, triple classification, entity recognition, clustering, and relation extraction.

<span class="mw-page-title-main">Attention Is All You Need</span> 2017 research paper by Google

"Attention Is All You Need" is a 2017 landmark research paper in machine learning authored by eight scientists working at Google. The paper introduced a new deep learning architecture known as the transformer, based on the attention mechanism proposed in 2014 by Bahdanau et al. It is considered a foundational paper in modern artificial intelligence, as the transformer approach has become the main architecture of large language models like those based on GPT. At the time, the focus of the research was on improving Seq2seq techniques for machine translation, but the authors go further in the paper, foreseeing the technique's potential for other tasks like question answering and what is now known as multimodal Generative AI.

References

  1. Jurafsky, Daniel; H. James, Martin (2000). Speech and language processing : an introduction to natural language processing, computational linguistics, and speech recognition. Upper Saddle River, N.J.: Prentice Hall. ISBN   978-0-13-095069-7.
  2. Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg; Dean, Jeffrey (2013). "Distributed Representations of Words and Phrases and their Compositionality". arXiv: 1310.4546 [cs.CL].
  3. Lebret, Rémi; Collobert, Ronan (2013). "Word Emdeddings through Hellinger PCA". Conference of the European Chapter of the Association for Computational Linguistics (EACL). Vol. 2014. arXiv: 1312.5542 .
  4. Levy, Omer; Goldberg, Yoav (2014). Neural Word Embedding as Implicit Matrix Factorization (PDF). NIPS.
  5. Li, Yitan; Xu, Linli (2015). Word Embedding Revisited: A New Representation Learning and Explicit Matrix Factorization Perspective (PDF). Int'l J. Conf. on Artificial Intelligence (IJCAI).
  6. Globerson, Amir (2007). "Euclidean Embedding of Co-occurrence Data" (PDF). Journal of Machine Learning Research.
  7. Qureshi, M. Atif; Greene, Derek (2018-06-04). "EVE: explainable vector based embedding technique using Wikipedia". Journal of Intelligent Information Systems. 53: 137–165. arXiv: 1702.06891 . doi:10.1007/s10844-018-0511-x. ISSN   0925-9902. S2CID   10656055.
  8. Levy, Omer; Goldberg, Yoav (2014). Linguistic Regularities in Sparse and Explicit Word Representations (PDF). CoNLL. pp. 171–180.
  9. Socher, Richard; Bauer, John; Manning, Christopher; Ng, Andrew (2013). Parsing with compositional vector grammars (PDF). Proc. ACL Conf. Archived from the original (PDF) on 2016-08-11. Retrieved 2014-08-14.
  10. Socher, Richard; Perelygin, Alex; Wu, Jean; Chuang, Jason; Manning, Chris; Ng, Andrew; Potts, Chris (2013). Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank (PDF). EMNLP.
  11. Sahlgren, Magnus. "A brief history of word embeddings".
  12. Firth, J.R. (1957). "A synopsis of linguistic theory 1930–1955". Studies in Linguistic Analysis: 1–32. Reprinted in F.R. Palmer, ed. (1968). Selected Papers of J.R. Firth 1952–1959. London: Longman.
  13. Luhn, H.P. (1953). "A New Method of Recording and Searching Information". American Documentation. 4: 14–16. doi:10.1002/asi.5090040104.
  14. Osgood, C.E.; Suci, G.J.; Tannenbaum, P.H. (1957). The Measurement of Meaning. University of Illinois Press.
  15. Salton, Gerard (1962). "Some experiments in the generation of word and document associations". Proceedings of the December 4-6, 1962, fall joint computer conference on - AFIPS '62 (Fall). pp. 234–250. doi: 10.1145/1461518.1461544 . ISBN   9781450378796. S2CID   9937095.
  16. Salton, Gerard; Wong, A; Yang, C S (1975). "A Vector Space Model for Automatic Indexing". Communications of the ACM. 18 (11): 613–620. doi:10.1145/361219.361220. hdl: 1813/6057 . S2CID   6473756.
  17. Dubin, David (2004). "The most influential paper Gerard Salton never wrote". Archived from the original on 18 October 2020. Retrieved 18 October 2020.
  18. Kanerva, Pentti, Kristoferson, Jan and Holst, Anders (2000): Random Indexing of Text Samples for Latent Semantic Analysis, Proceedings of the 22nd Annual Conference of the Cognitive Science Society, p. 1036. Mahwah, New Jersey: Erlbaum, 2000.
  19. Karlgren, Jussi; Sahlgren, Magnus (2001). Uesaka, Yoshinori; Kanerva, Pentti; Asoh, Hideki (eds.). "From words to understanding". Foundations of Real-World Intelligence. CSLI Publications: 294–308.
  20. Sahlgren, Magnus (2005) An Introduction to Random Indexing, Proceedings of the Methods and Applications of Semantic Indexing Workshop at the 7th International Conference on Terminology and Knowledge Engineering, TKE 2005, August 16, Copenhagen, Denmark
  21. Sahlgren, Magnus, Holst, Anders and Pentti Kanerva (2008) Permutations as a Means to Encode Order in Word Space, In Proceedings of the 30th Annual Conference of the Cognitive Science Society: 1300–1305.
  22. Bengio, Yoshua; Réjean, Ducharme; Pascal, Vincent (2000). "A Neural Probabilistic Language Model" (PDF). NeurIPS.
  23. Bengio, Yoshua; Ducharme, Réjean; Vincent, Pascal; Jauvin, Christian (2003). "A Neural Probabilistic Language Model" (PDF). Journal of Machine Learning Research. 3: 1137–1155.
  24. Bengio, Yoshua; Schwenk, Holger; Senécal, Jean-Sébastien; Morin, Fréderic; Gauvain, Jean-Luc (2006). "A Neural Probabilistic Language Model". Studies in Fuzziness and Soft Computing. Vol. 194. Springer. pp. 137–186. doi:10.1007/3-540-33486-6_6. ISBN   978-3-540-30609-2.
  25. Vinkourov, Alexei; Cristianini, Nello; Shawe-Taylor, John (2002). Inferring a semantic representation of text via cross-language correlation analysis (PDF). Advances in Neural Information Processing Systems. Vol. 15.
  26. Lavelli, Alberto; Sebastiani, Fabrizio; Zanoli, Roberto (2004). Distributional term representations: an experimental comparison. 13th ACM International Conference on Information and Knowledge Management. pp. 615–624. doi:10.1145/1031171.1031284.
  27. Roweis, Sam T.; Saul, Lawrence K. (2000). "Nonlinear Dimensionality Reduction by Locally Linear Embedding". Science. 290 (5500): 2323–6. Bibcode:2000Sci...290.2323R. CiteSeerX   10.1.1.111.3313 . doi:10.1126/science.290.5500.2323. PMID   11125150. S2CID   5987139.
  28. he:יהושע בנג'יו
  29. Morin, Fredric; Bengio, Yoshua (2005). "Hierarchical probabilistic neural network language model" (PDF). In Cowell, Robert G.; Ghahramani, Zoubin (eds.). Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research. Vol. R5. pp. 246–252.
  30. Mnih, Andriy; Hinton, Geoffrey (2009). "A Scalable Hierarchical Distributed Language Model". Advances in Neural Information Processing Systems. 21 (NIPS 2008). Curran Associates, Inc.: 1081–1088.
  31. "word2vec". Google Code Archive. Retrieved 23 July 2021.
  32. Reisinger, Joseph; Mooney, Raymond J. (2010). Multi-Prototype Vector-Space Models of Word Meaning. Vol. Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Los Angeles, California: Association for Computational Linguistics. pp. 109–117. ISBN   978-1-932432-65-7 . Retrieved October 25, 2019.
  33. Huang, Eric. (2012). Improving word representations via global context and multiple word prototypes. OCLC   857900050.
  34. Camacho-Collados, Jose; Pilehvar, Mohammad Taher (2018). "From Word to Sense Embeddings: A Survey on Vector Representations of Meaning". arXiv: 1805.04032 [cs.CL].
  35. Neelakantan, Arvind; Shankar, Jeevan; Passos, Alexandre; McCallum, Andrew (2014). "Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space". Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 1059–1069. arXiv: 1504.06654 . doi:10.3115/v1/d14-1113. S2CID   15251438.
  36. Ruas, Terry; Grosky, William; Aizawa, Akiko (2019-12-01). "Multi-sense embeddings through a word sense disambiguation process". Expert Systems with Applications. 136: 288–303. arXiv: 2101.08700 . doi:10.1016/j.eswa.2019.06.026. hdl: 2027.42/145475 . ISSN   0957-4174. S2CID   52225306.
  37. Agre, Gennady; Petrov, Daniel; Keskinova, Simona (2019-03-01). "Word Sense Disambiguation Studio: A Flexible System for WSD Feature Extraction". Information. 10 (3): 97. doi: 10.3390/info10030097 . ISSN   2078-2489.
  38. 1 2 Akbik, Alan; Blythe, Duncan; Vollgraf, Roland (2018). "Contextual String Embeddings for Sequence Labeling". Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, New Mexico, USA: Association for Computational Linguistics: 1638–1649.
  39. Li, Jiwei; Jurafsky, Dan (2015). "Do Multi-Sense Embeddings Improve Natural Language Understanding?". Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 1722–1732. arXiv: 1506.01070 . doi:10.18653/v1/d15-1200. S2CID   6222768.
  40. Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina (June 2019). "Proceedings of the 2019 Conference of the North". Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics: 4171–4186. doi:10.18653/v1/N19-1423. S2CID   52967399.
  41. Lucy, Li, and David Bamman. "Characterizing English variation across social media communities with BERT." Transactions of the Association for Computational Linguistics 9 (2021): 538-556.
  42. Reif, Emily, Ann Yuan, Martin Wattenberg, Fernanda B. Viegas, Andy Coenen, Adam Pearce, and Been Kim. "Visualizing and measuring the geometry of BERT." Advances in Neural Information Processing Systems 32 (2019).
  43. 1 2 Asgari, Ehsaneddin; Mofrad, Mohammad R.K. (2015). "Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics". PLOS ONE. 10 (11): e0141287. arXiv: 1503.05140 . Bibcode:2015PLoSO..1041287A. doi: 10.1371/journal.pone.0141287 . PMC   4640716 . PMID   26555596.
  44. 1 2 Rabii, Younès; Cook, Michael (2021-10-04). "Revealing Game Dynamics via Word Embeddings of Gameplay Data". Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. 17 (1): 187–194. doi: 10.1609/aiide.v17i1.18907 . ISSN   2334-0924. S2CID   248175634.
  45. Kiros, Ryan; Zhu, Yukun; Salakhutdinov, Ruslan; Zemel, Richard S.; Torralba, Antonio; Urtasun, Raquel; Fidler, Sanja (2015). "skip-thought vectors". arXiv: 1506.06726 [cs.CL].
  46. Reimers, Nils, and Iryna Gurevych. "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks." In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982-3992. 2019.
  47. "GloVe".
  48. Zhao, Jieyu; et al. (2018) (2018). "Learning Gender-Neutral Word Embeddings". arXiv: 1809.01496 [cs.CL].
  49. "Elmo".
  50. Pires, Telmo; Schlinger, Eva; Garrette, Dan (2019-06-04). "How multilingual is Multilingual BERT?". arXiv: 1906.01502 [cs.CL].
  51. "Gensim".
  52. "Indra". GitHub . 2018-10-25.
  53. Ghassemi, Mohammad; Mark, Roger; Nemati, Shamim (2015). "A visualization of evolving clinical sentiment using vector representations of clinical notes" (PDF). 2015 Computing in Cardiology Conference (CinC). Vol. 2015. pp. 629–632. doi:10.1109/CIC.2015.7410989. ISBN   978-1-5090-0685-4. PMC   5070922 . PMID   27774487.{{cite book}}: |journal= ignored (help)
  54. "Embedding Viewer". Embedding Viewer. Lexical Computing. Archived from the original on 8 February 2018. Retrieved 7 Feb 2018.
  55. Bolukbasi, Tolga; Chang, Kai-Wei; Zou, James; Saligrama, Venkatesh; Kalai, Adam (2016). "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings". arXiv: 1607.06520 [cs.CL].
  56. Bolukbasi, Tolga; Chang, Kai-Wei; Zou, James; Saligrama, Venkatesh; Kalai, Adam (2016-07-21). "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings". arXiv: 1607.06520 [cs.CL].
  57. Dieng, Adji B.; Ruiz, Francisco J. R.; Blei, David M. (2020). "Topic Modeling in Embedding Spaces". Transactions of the Association for Computational Linguistics. 8: 439–453. arXiv: 1907.04907 . doi:10.1162/tacl_a_00325.
  58. Zhao, Jieyu; Wang, Tianlu; Yatskar, Mark; Ordonez, Vicente; Chang, Kai-Wei (2017). "Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints". Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. pp. 2979–2989. doi:10.18653/v1/D17-1323.
  59. Petreski, Davor; Hashim, Ibrahim C. (2022-05-26). "Word embeddings are biased. But whose bias are they reflecting?". AI & Society. 38 (2): 975–982. doi: 10.1007/s00146-022-01443-w . ISSN   1435-5655. S2CID   249112516.