This article needs to be updated.(March 2024) |
Question answering (QA) is a computer science discipline within the fields of information retrieval and natural language processing (NLP) that is concerned with building systems that automatically answer questions that are posed by humans in a natural language. [1]
A question-answering implementation, usually a computer program, may construct its answers by querying a structured database of knowledge or information, usually a knowledge base. More commonly, question-answering systems can pull answers from an unstructured collection of natural language documents.
Some examples of natural language document collections used for question answering systems include:
Question-answering research attempts to develop ways of answering a wide range of question types, including fact, list, definition, how, why, hypothetical, semantically constrained, and cross-lingual questions.
Another way to categorize question-answering systems is by the technical approach used. There are a number of different types of QA systems, including
Rule-based systems use a set of rules to determine the correct answer to a question. Statistical systems use statistical methods to find the most likely answer to a question. Hybrid systems use a combination of rule-based and statistical methods.
Two early question answering systems were BASEBALL [4] and LUNAR. [5] BASEBALL answered questions about Major League Baseball over a period of one year[ ambiguous ]. LUNAR answered questions about the geological analysis of rocks returned by the Apollo Moon missions. Both question answering systems were very effective in their chosen domains. LUNAR was demonstrated at a lunar science convention in 1971 and it was able to answer 90% of the questions in its domain that were posed by people untrained on the system. Further restricted-domain question answering systems were developed in the following years. The common feature of all these systems is that they had a core database or knowledge system that was hand-written by experts of the chosen domain. The language abilities of BASEBALL and LUNAR used techniques similar to ELIZA and DOCTOR, the first chatterbot programs.
SHRDLU was a successful question-answering program developed by Terry Winograd in the late 1960s and early 1970s. It simulated the operation of a robot in a toy world (the "blocks world"), and it offered the possibility of asking the robot questions about the state of the world. The strength of this system was the choice of a very specific domain and a very simple world with rules of physics that were easy to encode in a computer program.
In the 1970s, knowledge bases were developed that targeted narrower domains of knowledge. The question answering systems developed to interface with these expert systems produced more repeatable[ clarification needed ] and valid responses to questions within an area of knowledge. These expert systems closely resembled modern question answering systems except in their internal architecture. Expert systems rely heavily on expert-constructed and organized knowledge bases, whereas many modern question answering systems rely on statistical processing of a large, unstructured, natural language text corpus.
The 1970s and 1980s saw the development of comprehensive theories in computational linguistics, which led to the development of ambitious projects in text comprehension and question answering. One example was the Unix Consultant (UC), developed by Robert Wilensky at U.C. Berkeley in the late 1980s. The system answered questions pertaining to the Unix operating system. It had a comprehensive, hand-crafted knowledge base of its domain, and it aimed at phrasing the answer to accommodate various types of users. Another project was LILOG, a text-understanding system that operated on the domain of tourism information in a German city. The systems developed in the UC and LILOG projects never went past the stage of simple demonstrations, but they helped the development of theories on computational linguistics and reasoning.
Specialized natural-language question answering systems have been developed, such as EAGLi for health and life scientists. [6]
QA systems are used in a variety of applications, including
As of 2001 [update] , question-answering systems typically included a question classifier module that determined the type of question and the type of answer. [7]
Different types of question-answering systems employ different architectures. For example, modern open-domain question answering systems may use a retriever-reader architecture. The retriever is aimed at retrieving relevant documents related to a given question, while the reader is used to infer the answer from the retrieved documents. Systems such as GPT-3, T5, [8] and BART [9] use an end-to-end[ jargon ] architecture in which a transformer-based[ jargon ] architecture stores large-scale textual data in the underlying parameters. Such models can answer questions without accessing any external knowledge sources.
Question answering is dependent on a good search corpus; without documents containing the answer, there is little any question answering system can do. Larger collections generally mean better question answering performance, unless the question domain is orthogonal to the collection. Data redundancy in massive collections, such as the web, means that nuggets of information are likely to be phrased in many different ways in differing contexts and documents, [10] leading to two benefits:
Some question answering systems rely heavily on automated reasoning. [11] [12]
This section needs additional citations for verification .(January 2016) |
In information retrieval, an open-domain question answering system tries to return an answer in response to the user's question. The returned answer is in the form of short texts rather than a list of relevant documents. [13] The system finds answers by using a combination of techniques from computational linguistics, information retrieval, and knowledge representation.
The system takes a natural language question as an input rather than a set of keywords, for example: "When is the national day of China?" It then transforms this input sentence into a query in its logical form. Accepting natural language questions makes the system more user-friendly, but harder to implement, as there are a variety of question types and the system will have to identify the correct one in order to give a sensible answer. Assigning a question type to the question is a crucial task; the entire answer extraction process relies on finding the correct question type and hence the correct answer type.
Keyword extraction is the first step in identifying the input question type. [14] In some cases, words clearly indicate the question type, e.g., "Who", "Where", "When", or "How many"—these words might suggest to the system that the answers should be of type "Person", "Location", "Date", or "Number", respectively. POS (part-of-speech) tagging and syntactic parsing techniques can also determine the answer type. In the example above, the subject is "Chinese National Day", the predicate is "is" and the adverbial modifier is "when", therefore the answer type is "Date". Unfortunately, some interrogative words like "Which", "What", or "How" do not correspond to unambiguous answer types: Each can represent more than one type. In situations like this, other words in the question need to be considered. A lexical dictionary such as WordNet can be used for understanding the context.
Once the system identifies the question type, it uses an information retrieval system to find a set of documents that contain the correct keywords. A tagger and NP/Verb Group chunker can verify whether the correct entities and relations are mentioned in the found documents. For questions such as "Who" or "Where", a named-entity recogniser finds relevant "Person" and "Location" names from the retrieved documents. Only the relevant paragraphs are selected for ranking.[ clarification needed ]
A vector space model can classify the candidate answers. Check[ who? ] if the answer is of the correct type as determined in the question type analysis stage. An inference technique can validate the candidate answers. A score is then given to each of these candidates according to the number of question words it contains and how close these words are to the candidate—the more and the closer the better. The answer is then translated by parsing into a compact and meaningful representation. In the previous example, the expected output answer is "1st Oct."
An open-source, math-aware, question answering system called MathQA, based on Ask Platypus and Wikidata, was published in 2018. [15] MathQA takes an English or Hindi natural language question as input and returns a mathematical formula retrieved from Wikidata as a succinct answer, translated into a computable form that allows the user to insert values for the variables. The system retrieves names and values of variables and common constants from Wikidata if those are available. It is claimed that the system outperforms a commercial computational mathematical knowledge engine on a test set. [15] MathQA is hosted by Wikimedia at https://mathqa.wmflabs.org/. In 2022, it was extended to answer 15 math question types. [16]
MathQA methods need to combine natural and formula language. One possible approach is to perform supervised annotation via Entity Linking. The "ARQMath Task" at CLEF 2020 [17] was launched to address the problem of linking newly posted questions from the platform Math Stack Exchange to existing ones that were already answered by the community. Providing hyperlinks to already answered, semantically related questions helps users to get answers earlier but is a challenging problem because semantic relatedness is not trivial. [18] The lab was motivated by the fact that 20% of mathematical queries in general-purpose search engines are expressed as well-formed questions. [19] The challenge contained two separate sub-tasks. Task 1: "Answer retrieval" matching old post answers to newly posed questions, and Task 2: "Formula retrieval" matching old post formulae to new questions. Starting with the domain of mathematics, which involves formula language, the goal is to later extend the task to other domains (e.g., STEM disciplines, such as chemistry, biology, etc.), which employ other types of special notation (e.g., chemical formulae). [17] [18]
The inverse of mathematical question answering—mathematical question generation—has also been researched. The PhysWikiQuiz physics question generation and test engine retrieves mathematical formulae from Wikidata together with semantic information about their constituting identifiers (names and values of variables). [20] The formulae are then rearranged to generate a set of formula variants. Subsequently, the variables are substituted with random values to generate a large number of different questions suitable for individual student tests. PhysWikiquiz is hosted by Wikimedia at https://physwikiquiz.wmflabs.org/.
Question answering systems have been extended in recent[ may be outdated as of April 2023 ] years to encompass additional domains of knowledge [21] For example, systems have been developed to automatically answer temporal and geospatial questions, questions of definition and terminology, biographical questions, multilingual questions, and questions about the content of audio, images, [22] and video. [23] Current question answering research topics include:
In 2011, Watson, a question answering computer system developed by IBM, competed in two exhibition matches of Jeopardy! against Brad Rutter and Ken Jennings, winning by a significant margin. [32] Facebook Research made their DrQA system [33] available under an open source license. This system uses Wikipedia as knowledge source. [2] The open source framework Haystack by deepset combines open-domain question answering with generative question answering and supports the domain adaptation[ clarification needed ] of the underlying[ clarification needed ] language models for industry use cases[ vague ]. [34] [35]
Natural language processing (NLP) is an interdisciplinary subfield of computer science and artificial intelligence. It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics. Typically data is collected in text corpora, using either rule-based, statistical or neural-based approaches in machine learning and deep learning.
Word-sense disambiguation is the process of identifying which sense of a word is meant in a sentence or other segment of context. In human language processing and cognition, it is usually subconscious.
Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents and other electronically represented sources. Typically, this involves processing human language texts by means of natural language processing (NLP). Recent activities in multimedia document processing like automatic annotation and content extraction out of images/audio/video/documents could be seen as information extraction.
Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content as opposed to lexicographical similarity. These are mathematical tools used to estimate the strength of the semantic relationship between units of language, concepts or instances, through a numerical description obtained according to the comparison of information supporting their meaning or describing their nature. The term semantic similarity is often confused with semantic relatedness. Semantic relatedness includes any relation between two terms, while semantic similarity only includes "is a" relations. For example, "car" is similar to "bus", but is also related to "road" and "driving".
A language model is a probabilistic model of a natural language. In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.
Sentiment analysis is the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information. Sentiment analysis is widely applied to voice of the customer materials such as reviews and survey responses, online and social media, and healthcare materials for applications that range from marketing to customer service to clinical medicine. With the rise of deep language models, such as RoBERTa, also more difficult data domains can be analyzed, e.g., news texts where authors typically express their opinion/sentiment less explicitly.
In linguistics, statistical semantics applies the methods of statistics to the problem of determining the meaning of words or phrases, ideally through unsupervised learning, to a degree of precision at least sufficient for the purpose of information retrieval.
STUDENT is an early artificial intelligence program that solves algebra word problems. It is written in Lisp by Daniel G. Bobrow as his PhD thesis in 1964. It was designed to read and solve the kind of word problems found in high school algebra books. The program is often cited as an early accomplishment of AI in natural language processing.
Ontology learning is the automatic or semi-automatic creation of ontologies, including extracting the corresponding domain's terms and the relationships between the concepts that these terms represent from a corpus of natural language text, and encoding them with an ontology language for easy retrieval. As building ontologies manually is extremely labor-intensive and time-consuming, there is great motivation to automate the process.
Natural-language user interface is a type of computer human interface where linguistic phenomena such as verbs, phrases and clauses act as UI controls for creating, selecting and modifying data in software applications.
William Aaron Woods, generally known as Bill Woods, is a researcher in natural language processing, continuous speech understanding, knowledge representation, and knowledge-based search technology. He is currently a Software Engineer at Google.
In natural language processing, textual entailment (TE), also known as natural language inference (NLI), is a directional relation between text fragments. The relation holds whenever the truth of one text fragment follows from another text.
In natural language processing and information retrieval, explicit semantic analysis (ESA) is a vectoral representation of text that uses a document corpus as a knowledge base. Specifically, in ESA, a word is represented as a column vector in the tf–idf matrix of the text corpus and a document is represented as the centroid of the vectors representing its words. Typically, the text corpus is English Wikipedia, though other corpora including the Open Directory Project have been used.
The following outline is provided as an overview of and topical guide to natural-language processing:
In natural language processing, entity linking, also referred to as named-entity linking (NEL), named-entity disambiguation (NED), named-entity recognition and disambiguation (NERD) or named-entity normalization (NEN) is the task of assigning a unique identity to entities mentioned in text. For example, given the sentence "Paris is the capital of France", the idea is to determine that "Paris" refers to the city of Paris and not to Paris Hilton or any other entity that could be referred to as "Paris". Entity linking is different from named-entity recognition (NER) in that NER identifies the occurrence of a named entity in text but it does not identify which specific entity it is.
In natural language processing (NLP), a text graph is a graph representation of a text item. It is typically created as a preprocessing step to support NLP tasks such as text condensation term disambiguation (topic-based) text summarization, relation extraction and textual entailment.
In natural language processing (NLP), a word embedding is a representation of a word. The embedding is used in text analysis. Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. Word embeddings can be obtained using language modeling and feature learning techniques, where words or phrases from the vocabulary are mapped to vectors of real numbers.
Semantic parsing is the task of converting a natural language utterance to a logical form: a machine-understandable representation of its meaning. Semantic parsing can thus be understood as extracting the precise meaning of an utterance. Applications of semantic parsing include machine translation, question answering, ontology induction, automated reasoning, and code generation. The phrase was first used in the 1970s by Yorick Wilks as the basis for machine translation programs working with only semantic representations. Semantic parsing is one of the important tasks in computational linguistics and natural language processing.
Paraphrase or paraphrasing in computational linguistics is the natural language processing task of detecting and generating paraphrases. Applications of paraphrasing are varied including information retrieval, question answering, text summarization, and plagiarism detection. Paraphrasing is also useful in the evaluation of machine translation, as well as semantic parsing and generation of new samples to expand existing corpora.
deepset is an enterprise software vendor that provides developers with the tools to build production-ready natural language processing (NLP) systems. It was founded in 2018 in Berlin by Milos Rusic, Malte Pietsch, and Timo Möller. deepset authored and maintains the open source software Haystack and its commercial SaaS offering deepset Cloud.
{{cite book}}
: CS1 maint: location missing publisher (link){{cite journal}}
: Cite journal requires |journal=
(help){{cite web}}
: CS1 maint: bot: original URL status unknown (link)