GloVe

Last updated

GloVe, coined from Global Vectors, is a model for distributed word representation. The model is an unsupervised learning algorithm for obtaining vector representations for words. This is achieved by mapping words into a meaningful space where the distance between words is related to semantic similarity. [1] Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space. It is developed as an open-source project at Stanford [2] and was launched in 2014. As log-bilinear regression model for unsupervised learning of word representations, it combines the features of two model families, namely the global matrix factorization and local context window methods. [3]

Contents

Applications

GloVe can be used to find relations between words like synonyms, company-product relations, zip codes and cities, etc. However, the unsupervised learning algorithm is not effective in identifying homographs, i.e., words with the same spelling and different meanings. This is as the unsupervised learning algorithm calculates a single set of vectors for words with the same morphological structure. [4] The algorithm is also used by the SpaCy library to build semantic word embedding features, while computing the top list words that match with distance measures such as cosine similarity and Euclidean distance approach. [5] GloVe was also used as the word representation framework for the online and offline systems designed to detect psychological distress in patient interviews. [1]

See also

Related Research Articles

Semantic network Knowledge base that represents semantic relations between concepts in a network

A semantic network, or frame network is a knowledge base that represents semantic relations between concepts in a network. This is often used as a form of knowledge representation. It is a directed or undirected graph consisting of vertices, which represent concepts, and edges, which represent semantic relations between concepts, mapping or connecting semantic fields. A semantic network may be instantiated as, for example, a graph database or a concept map. Typical standardized semantic networks are expressed as semantic triples.

Word-sense disambiguation (WSD) is an open problem in computational linguistics concerned with identifying which sense of a word is used in a sentence. The solution to this issue impacts other computer-related writing, such as discourse, improving relevance of search engines, anaphora resolution, coherence, and inference.

Machine learning Study of algorithms that improve automatically through experience

Machine learning (ML) is the study of computer algorithms that can improve automatically through experience and by the use of data. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.

Latent semantic analysis (LSA) is a technique in natural language processing, in particular distributional semantics, of analyzing relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms. LSA assumes that words that are close in meaning will occur in similar pieces of text. A matrix containing word counts per document is constructed from a large piece of text and a mathematical technique called singular value decomposition (SVD) is used to reduce the number of rows while preserving the similarity structure among columns. Documents are then compared by taking the cosine of the angle between the two vectors formed by any two columns. Values close to 1 represent very similar documents while values close to 0 represent very dissimilar documents.

Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content as opposed to lexicographical similarity. These are mathematical tools used to estimate the strength of the semantic relationship between units of language, concepts or instances, through a numerical description obtained according to the comparison of information supporting their meaning or describing their nature. The term semantic similarity is often confused with semantic relatedness. Semantic relatedness includes any relation between two terms, while semantic similarity only includes "is a" relations. For example, "car" is similar to "bus", but is also related to "road" and "driving".

A statistical language model is a probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability to the whole sequence.

The sequence between semantic related ordered words is classified as a lexical chain. A lexical chain is a sequence of related words in writing, spanning short or long distances. A chain is independent of the grammatical structure of the text and in effect it is a list of words that captures a portion of the cohesive structure of the text. A lexical chain can provide a context for the resolution of an ambiguous term and enable identification of the concept that the term represents.

In linguistics, statistical semantics applies the methods of statistics to the problem of determining the meaning of words or phrases, ideally through unsupervised learning, to a degree of precision at least sufficient for the purpose of information retrieval.

Distributional semantics is a research area that develops and studies theories and methods for quantifying and categorizing semantic similarities between linguistic items based on their distributional properties in large samples of language data. The basic idea of distributional semantics can be summed up in the so-called Distributional hypothesis: linguistic items with similar distributions have similar meanings.

Vector space model or term vector model is an algebraic model for representing text documents as vectors of identifiers. It is used in information filtering, information retrieval, indexing and relevancy rankings. Its first use was in the SMART Information Retrieval System.

In natural language processing and information retrieval, explicit semantic analysis (ESA) is a vectoral representation of text that uses a document corpus as a knowledge base. Specifically, in ESA, a word is represented as a column vector in the tf–idf matrix of the text corpus and a document is represented as the centroid of the vectors representing its words. Typically, the text corpus is English Wikipedia, though other corpora including the Open Directory Project have been used.

Feature learning

In machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.

Word embedding Method in natural language processing

In natural language processing (NLP), word embedding is a term used for the representation of words for text analysis, typically in the form of a real-valued vector that encodes the meaning of the word such that the words that are closer in the vector space are expected to be similar in meaning. Word embeddings can be obtained using a set of language modeling and feature learning techniques where words or phrases from the vocabulary are mapped to vectors of real numbers. Conceptually it involves the mathematical embedding from space with many dimensions per word to a continuous vector space with a much lower dimension.

Word2vec Models used to produce word embeddings

Word2vec is a technique for natural language processing published in 2013. The word2vec algorithm uses a neural network model to learn word associations from a large corpus of text. Once trained, such a model can detect synonymous words or suggest additional words for a partial sentence. As the name implies, word2vec represents each distinct word with a particular list of numbers called a vector. The vectors are chosen carefully such that a simple mathematical function indicates the level of semantic similarity between the words represented by those vectors.

Semantic folding theory describes a procedure for encoding the semantics of natural language text in a semantically grounded binary representation. This approach provides a framework for modelling how language data is processed by the neocortex.

Semantic spaces in the natural language domain aim to create representations of natural language that are capable of capturing meaning. The original motivation for semantic spaces stems from two core challenges of natural language: Vocabulary mismatch and ambiguity of natural language.

Paraphrase or paraphrasing in computational linguistics is the natural language processing task of detecting and generating paraphrases. Applications of paraphrasing are varied including information retrieval, question answering, text summarization, and plagiarism detection. Paraphrasing is also useful in the evaluation of machine translation, as well as semantic parsing and generation of new samples to expand existing corpora.

fastText is a library for learning of word embeddings and text classification created by Facebook's AI Research (FAIR) lab. The model allows one to create an unsupervised learning or supervised learning algorithm for obtaining vector representations for words. Facebook makes available pretrained models for 294 languages. Several papers describe the techniques used by fastText.

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-based machine learning technique for natural language processing (NLP) pre-training developed by Google. BERT was created and published in 2018 by Jacob Devlin and his colleagues from Google. In 2019, Google announced that it had begun leveraging BERT in its search engine, and by late 2020 it was using BERT in almost every English-language query. A 2020 literature survey concluded that "in a little over a year, BERT has become a ubiquitous baseline in NLP experiments", counting over 150 research publications analyzing and improving the model.

struc2vec is a framework to generate node vector representations on a graph that preserve the structural identity. In contrast to node2vec, that optimizes node embeddings so that nearby nodes in the graph have similar embedding, struc2vec captures the roles of nodes in a graph, even if structurally similar nodes are far apart in the graph. It learns low-dimensional representations for nodes in a graph, generating random walks through a constructed multi-layer graph starting at each graph node. It is useful for machine learning applications where the downstream application is more related with the structural equivalence of the nodes. struc2vec identifies nodes that play a similar role based solely on the structure of the graph, for example computing the structural identity of individuals in social networks. In particular, struc2vec employs a degree-based method to measure the pairwise structural role similarity, which is then adopted to build the multi-layer graph. Moreover, the distance between the latent representation of nodes is strongly correlated to their structural similarity. The framework contains three optimizations: reducing the length of degree sequences considered, reducing the number of pairwise similarity calculations, and reducing the number of layers in the generated graph.

References

  1. 1 2 Abad, Alberto; Ortega, Alfonso; Teixeira, António; Mateo, Carmen; Hinarejos, Carlos; Perdigão, Fernando; Batista, Fernando; Mamede, Nuno (2016). Advances in Speech and Language Technologies for Iberian Languages: Third International Conference, IberSPEECH 2016, Lisbon, Portugal, November 23-25, 2016, Proceedings. Cham: Springer. p. 165. ISBN   9783319491691.
  2. GloVe: Global Vectors for Word Representation (pdf) "We use our insights to construct a new model for word representation which we call GloVe, for Global Vectors, because the global corpus statistics are captured directly by the model."
  3. Kalajdziski, Slobodan (2018). ICT Innovations 2018. Engineering and Life Sciences. Cham: Springer. p. 220. ISBN   9783030008246.
  4. Wenig, Phillip (2019). "Creation of Sentence Embeddings Based on Topical Word Representations: An approach towards universal language understanding". Towards Data Science.
  5. Singh, Mayank; Gupta, P. K.; Tyagi, Vipin; Flusser, Jan; Ören, Tuncer I. (2018). Advances in Computing and Data Sciences: Second International Conference, ICACDS 2018, Dehradun, India, April 20-21, 2018, Revised Selected Papers. Singapore: Springer. p. 171. ISBN   9789811318122.