FastText

Last updated
fastText
Developer(s) Facebook's AI Research (FAIR) lab [1]
Initial releaseNovember 9, 2015;9 years ago (2015-11-09)
Stable release
0.9.2 [2] / April 28, 2020;5 years ago (2020-04-28)
Repository github.com/facebookresearch/fastText
Written in C++, Python
Platform Linux, macOS, Windows
Type Machine learning library
License MIT License
Website fasttext.cc

fastText is a library for learning of word embeddings and text classification created by Facebook's AI Research (FAIR) lab. [3] [4] [5] [6] The model allows one to create an unsupervised learning or supervised learning algorithm for obtaining vector representations for words. Facebook makes available pretrained models for 294 languages. [7] [8] Several papers describe the techniques used by fastText. [9] [10] [11] [12]

Contents

See also

References

  1. Mannes, John. "Facebook's fastText library is now optimized for mobile". TechCrunch . Retrieved 12 January 2018.
  2. Onur Çelebi (2020-04-28). "facebookresearch/fastText/releases/tag/v0.9.2". Facebook. Retrieved 2020-11-21.
  3. Mannes, John. "Facebook's fastText library is now optimized for mobile". TechCrunch . Retrieved 12 January 2018.
  4. Ryan, Kevin J. "Facebook's New Open Source Software Can Learn 1 Billion Words in 10 Minutes". Inc. Retrieved 12 January 2018.
  5. Low, Cherlynn. "Facebook is open-sourcing its AI bot-building research". Engadget . Retrieved 12 January 2018.
  6. Mannes, John. "Facebook's Artificial Intelligence Research lab releases open source fastText on GitHub". TechCrunch . Retrieved 12 January 2018.
  7. Sabin, Dyani. "Facebook Makes A.I. Program Available in 294 Languages". Inverse . Retrieved 12 January 2018.
  8. "Wiki word vectors". fastText. Retrieved 26 November 2020.
  9. "References · fastText". fasttext.cc. Retrieved 2021-09-08.
  10. Bojanowski, Piotr; Grave, Edouard; Joulin, Armand; Mikolov, Tomas (2017-06-19). "Enriching Word Vectors with Subword Information". arXiv: 1607.04606 [cs.CL].
  11. Joulin, Armand; Grave, Edouard; Bojanowski, Piotr; Mikolov, Tomas (2016-08-09). "Bag of Tricks for Efficient Text Classification". arXiv: 1607.01759 [cs.CL].
  12. Joulin, Armand; Grave, Edouard; Bojanowski, Piotr; Douze, Matthijs; Jégou, Hérve; Mikolov, Tomas (2016-12-12). "FastText.zip: Compressing text classification models". arXiv: 1612.03651 [cs.CL].