Stop words are the words in a stop list (or stoplist or negative dictionary) which are filtered out (i.e. stopped) before or after processing of natural language data (text) because they are deemed insignificant. [1] There is no single universal list of stop words used by all natural language processing tools, nor any agreed upon rules for identifying stop words, and indeed not all tools even use such a list. Therefore, any group of words can be chosen as the stop words for a given purpose. The "general trend in [information retrieval] systems over time has been from standard use of quite large stop lists (200–300 terms) to very small stop lists (7–12 terms) to no stop list whatsoever". [2]
A predecessor concept was used in creating some concordances. For example, the first Hebrew concordance, Isaac Nathan ben Kalonymus's Me’ir Nativ, contained a one-page list of unindexed words, with nonsubstantive prepositions and conjunctions which are similar to modern stop words. [3]
Hans Peter Luhn, one of the pioneers in information retrieval, is credited with coining the phrase and using the concept when introducing his Keyword-in-Context automatic indexing process. [4] The phrase "stop word", which is not in Luhn's 1959 presentation, and the associated terms "stop list" and "stoplist" appear in the literature shortly afterward. [5]
Although it is commonly assumed that stoplists include only the most frequent words in a language, it was C.J. Van Rijsbergen who proposed the first standardized list which was not based on word frequency information. The "Van list" included 250 English words. Martin Porter's word stemming program developed in the 1980s built on the Van list, and the Porter list is now commonly used as a default stoplist in a variety of software applications.
In 1990, Christopher Fox proposed the first general stop list based on empirical word frequency information derived from the Brown Corpus:
This paper reports an exercise in generating a stop list for general text based on the Brown corpus of 1,014,000 words drawn from a broad range of literature in English. We start with a list of tokens occurring more than 300 times in the Brown corpus. From this list of 278 words, 32 are culled on the grounds that they are too important as potential index terms. Twenty-six words are then added to the list in the belief that they may occur very frequently in certain kinds of literature. Finally, 149 words are added to the list because the finite state machine based filter in which this list is intended to be used is able to filter them at almost no cost. The final product is a list of 421 stop words that should be maximally efficient and effective in filtering the most frequently occurring and semantically neutral words in general literature in English. [6]
In SEO terminology, stop words are the most common words that many search engines used to avoid for the purposes of saving space and time in processing of large data during crawling or indexing.
For some search engines, these are some of the most common, short function words, such as the, is, at, which, and on. In this case, stop words can cause problems when searching for phrases that include them, particularly in names such as "The Who", "The The", or "Take That". Other search engines remove some of the most common words—including lexical words, such as "want"—from a query in order to improve performance. [7]
In recent years the SEO best practices around stop words have evolved along with the fields of machine learning and natural language processing. In February 2021, John Mueller, Webmaster Trends Analyst at Google, Tweeted, "I wouldn't worry about stop words at all; write naturally. Search engines look at much, much more than individual words. 'To be or not to be' just is a collection of stop words, but stop words alone don't do it any justice." [8] [9]
Information retrieval (IR) in computing and information science is the task of identifying and retrieving information system resources that are relevant to an information need. The information need can be specified in the form of a search query. In the case of document retrieval, queries can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds.
In computing, a search engine is an information retrieval software system designed to help find information stored on one or more computer systems. Search engines discover, crawl, transform, and store information for retrieval and presentation in response to user queries. The search results are usually presented in a list and are commonly called hits. The most widely used type of search engine is a web search engine, which searches for information on the World Wide Web.
Key Word In Context (KWIC) is the most common format for concordance lines. The term KWIC was coined by Hans Peter Luhn. The system was based on a concept called keyword in titles, which was first proposed for Manchester libraries in 1864 by Andrea Crestadoro.
A query language, also known as data query language or database query language (DQL), is a computer language used to make queries in databases and information systems. In database systems, query languages rely on strict theory to retrieve information. A well known example is the Structured Query Language (SQL).
Machine translation can use a method based on dictionary entries, which means that the words will be translated as a dictionary does – word by word, usually without much correlation of meaning between them. Dictionary lookups may be done with or without morphological analysis or lemmatisation. While this approach to machine translation is probably the least sophisticated, dictionary-based machine translation is ideally suitable for the translation of long lists of phrases on the subsentential level, e.g. inventories or simple catalogs of products and services.
Document retrieval is defined as the matching of some stated user query against a set of free-text records. These records could be any type of mainly unstructured text, such as newspaper articles, real estate records or paragraphs in a manual. User queries can range from multi-sentence full descriptions of an information need to a few words.
Sentence extraction is a technique used for automatic summarization of a text. In this shallow approach, statistical heuristics are used to identify the most salient sentences of a text. Sentence extraction is a low-cost approach compared to more knowledge-intensive deeper approaches which require additional knowledge bases such as ontologies or linguistic knowledge. In short, sentence extraction works as a filter that allows only meaningful sentences to pass.
In text retrieval, full-text search refers to techniques for searching a single computer-stored document or a collection in a full-text database. Full-text search is distinguished from searches based on metadata or on parts of the original texts represented in databases.
A concordance is an alphabetical list of the principal words used in a book or body of work, listing every instance of each word with its immediate context. Historically, concordances have been compiled only for works of special importance, such as the Vedas, Bible, Qur'an or the works of Shakespeare, James Joyce or classical Latin and Greek authors, because of the time, difficulty, and expense involved in creating a concordance in the pre-computer era.
In computer science, an inverted index is a database index storing a mapping from content, such as words or numbers, to its locations in a table, or in a document or a set of documents. The purpose of an inverted index is to allow fast full-text searches, at a cost of increased processing when a document is added to the database. The inverted file may be the database file itself, rather than its index. It is the most popular data structure used in document retrieval systems, used on a large scale for example in search engines. Additionally, several significant general-purpose mainframe-based database management systems have used inverted list architectures, including ADABAS, DATACOM/DB, and Model 204.
A search engine is a software system that provides hyperlinks to web pages and other relevant information on the Web in response to a user's query. The user inputs a query within a web browser or a mobile app, and the search results are often a list of hyperlinks, accompanied by textual summaries and images. Users also have the option of limiting the search to a specific type of results, such as images, videos, or news.
The Lemur Project is a collaboration between the Center for Intelligent Information Retrieval at the University of Massachusetts Amherst and the Language Technologies Institute at Carnegie Mellon University. The Lemur Project develops search engines, browser toolbars, text analysis tools, and data resources that support research and development of information retrieval and text mining software. The project is best known for its Indri and Galago search engines, the ClueWeb09 and ClueWeb12 datasets, and the RankLib learning-to-rank library. The software and datasets are used widely in scientific and research applications, as well as in some commercial applications.
Search engine indexing is the collecting, parsing, and storing of data to facilitate fast and accurate information retrieval. Index design incorporates interdisciplinary concepts from linguistics, cognitive psychology, mathematics, informatics, and computer science. An alternate name for the process, in the context of search engines designed to find web pages on the Internet, is web indexing.
Enterprise search is software technology for searching data sources internal to a company, typically intranet and database content. The search is generally offered only to users internal to the company. Enterprise search can be contrasted with web search, which applies search technology to documents on the open web, and desktop search, which applies search technology to the content on a single computer.
Audio mining is a technique by which the content of an audio signal can be automatically analyzed and searched. It is most commonly used in the field of automatic speech recognition, where the analysis tries to identify any speech within the audio. The term ‘audio mining’ is sometimes used interchangeably with audio indexing, phonetic searching, phonetic indexing, speech indexing, audio analytics, speech analytics, word spotting, and information retrieval. Audio indexing, however, is mostly used to describe the pre-process of audio mining, in which the audio file is broken down into a searchable index of words.
A concept search is an automated information retrieval method that is used to search electronically stored unstructured text for information that is conceptually similar to the information provided in a search query. In other words, the ideas expressed in the information retrieved in response to a concept search query are relevant to the ideas contained in the text of the query.
Vector space model or term vector model is an algebraic model for representing text documents as vectors such that the distance between vectors represents the relevance between the documents. It is used in information filtering, information retrieval, indexing and relevancy rankings. Its first use was in the SMART Information Retrieval System.
The following outline is provided as an overview of and topical guide to natural-language processing:
Sketch Engine is a corpus manager and text analysis software developed by Lexical Computing since 2003. Its purpose is to enable people studying language behaviour to search large text collections according to complex and linguistically motivated queries. Sketch Engine gained its name after one of the key features, word sketches: one-page, automatic, corpus-derived summaries of a word's grammatical and collocational behaviour. Currently, it supports and provides corpora in over 90 languages.
Query understanding is the process of inferring the intent of a search engine user by extracting semantic meaning from the searcher’s keywords. Query understanding methods generally take place before the search engine retrieves and ranks results. It is related to natural language processing but specifically focused on the understanding of search queries.
{{cite book}}
: CS1 maint: multiple names: authors list (link)