Unsupervised learning

Last updated

Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision, where a small portion of the data is tagged, and self-supervision. Some researchers consider self-supervised learning a form of unsupervised learning. [2]

Contents

Conceptually, unsupervised learning divides into the aspects of data, training, algorithm, and downstream applications. Typically, the dataset is harvested cheaply "in the wild", such as massive text corpus obtained by web crawling, with only minor filtering (such as Common Crawl). This compares favorably to supervised learning, where the dataset (such as the ImageNet1000) is typically constructed manually, which is much more expensive.

There were algorithms designed specifically for unsupervised learning, such as clustering algorithms like k-means, dimensionality reduction techniques like principal component analysis (PCA), Boltzmann machine learning, and autoencoders. After the rise of deep learning, most large-scale unsupervised learning have been done by training general-purpose neural network architectures by gradient descent, adapted to performing unsupervised learning by designing an appropriate training procedure.

Sometimes a trained model can be used as-is, but more often they are modified for downstream applications. For example, the generative pretraining method trains a model to generate a textual dataset, before finetuning it for other applications, such as text classification. [3] [4] As another example, autoencoders are trained to good features, which can then be used as a module for other models, such as in a latent diffusion model.

Tasks

Tendency for a task to employ supervised vs. unsupervised methods. Task names straddling circle boundaries is intentional. It shows that the classical division of imaginative tasks (left) employing unsupervised methods is blurred in today's learning schemes. Task-guidance.png
Tendency for a task to employ supervised vs. unsupervised methods. Task names straddling circle boundaries is intentional. It shows that the classical division of imaginative tasks (left) employing unsupervised methods is blurred in today's learning schemes.

Tasks are often categorized as discriminative (recognition) or generative (imagination). Often but not always, discriminative tasks use supervised methods and generative tasks use unsupervised (see Venn diagram); however, the separation is very hazy. For example, object recognition favors supervised learning but unsupervised learning can also cluster objects into groups. Furthermore, as progress marches onward some tasks employ both methods, and some tasks swing from one to another. For example, image recognition started off as heavily supervised, but became hybrid by employing unsupervised pre-training, and then moved towards supervision again with the advent of dropout, ReLU, and adaptive learning rates.

A typical generative task is as follows. At each step, a datapoint is sampled from the dataset, and part of the data is removed, and the model must infer the removed part. This is particularly clear for the denoising autoencoders and BERT.

Neural network architectures

Training

During the learning phase, an unsupervised network tries to mimic the data it's given and uses the error in its mimicked output to correct itself (i.e. correct its weights and biases). Sometimes the error is expressed as a low probability that the erroneous output occurs, or it might be expressed as an unstable high energy state in the network.

In contrast to supervised methods' dominant use of backpropagation, unsupervised learning also employs other methods including: Hopfield learning rule, Boltzmann learning rule, Contrastive Divergence, Wake Sleep, Variational Inference, Maximum Likelihood, Maximum A Posteriori, Gibbs Sampling, and backpropagating reconstruction errors or hidden state reparameterizations. See the table below for more details.

Energy

An energy function is a macroscopic measure of a network's activation state. In Boltzmann machines, it plays the role of the Cost function. This analogy with physics is inspired by Ludwig Boltzmann's analysis of a gas' macroscopic energy from the microscopic probabilities of particle motion , where k is the Boltzmann constant and T is temperature. In the RBM network the relation is , [5] where and vary over every possible activation pattern and . To be more precise, , where is an activation pattern of all neurons (visible and hidden). Hence, some early neural networks bear the name Boltzmann Machine. Paul Smolensky calls the Harmony. A network seeks low energy which is high Harmony.

Networks

This table shows connection diagrams of various unsupervised networks, the details of which will be given in the section Comparison of Networks. Circles are neurons and edges between them are connection weights. As network design changes, features are added on to enable new capabilities or removed to make learning faster. For instance, neurons change between deterministic (Hopfield) and stochastic (Boltzmann) to allow robust output, weights are removed within a layer (RBM) to hasten learning, or connections are allowed to become asymmetric (Helmholtz).

Hopfield Boltzmann RBM Stacked Boltzmann
A network based on magnetic domains in iron with a single self-connected layer. It can be used as a content addressable memory. Hopfield-net-vector.svg
A network based on magnetic domains in iron with a single self-connected layer. It can be used as a content addressable memory.
Network is separated into 2 layers (hidden vs. visible), but still using symmetric 2-way weights. Following Boltzmann's thermodynamics, individual probabilities give rise to macroscopic energies. Boltzmannexamplev1.png
Network is separated into 2 layers (hidden vs. visible), but still using symmetric 2-way weights. Following Boltzmann's thermodynamics, individual probabilities give rise to macroscopic energies.
Restricted Boltzmann Machine. This is a Boltzmann machine where lateral connections within a layer are prohibited to make analysis tractable. Restricted Boltzmann machine.svg
Restricted Boltzmann Machine. This is a Boltzmann machine where lateral connections within a layer are prohibited to make analysis tractable.
This network has multiple RBM's to encode a hierarchy of hidden features. After a single RBM is trained, another blue hidden layer (see left RBM) is added, and the top 2 layers are trained as a red & blue RBM. Thus the middle layers of an RBM acts as hidden or visible, depending on the training phase it is in. Stacked-boltzmann.png
This network has multiple RBM's to encode a hierarchy of hidden features. After a single RBM is trained, another blue hidden layer (see left RBM) is added, and the top 2 layers are trained as a red & blue RBM. Thus the middle layers of an RBM acts as hidden or visible, depending on the training phase it is in.
Helmholtz Autoencoder VAE
Instead of the bidirectional symmetric connection of the stacked Boltzmann machines, we have separate one-way connections to form a loop. It does both generation and discrimination. Helmholtz Machine.png
Instead of the bidirectional symmetric connection of the stacked Boltzmann machines, we have separate one-way connections to form a loop. It does both generation and discrimination.
A feed forward network that aims to find a good middle layer representation of its input world. This network is deterministic, so it is not as robust as its successor the VAE. Autoencoder schema.png
A feed forward network that aims to find a good middle layer representation of its input world. This network is deterministic, so it is not as robust as its successor the VAE.
Applies Variational Inference to the Autoencoder. The middle layer is a set of means & variances for Gaussian distributions. The stochastic nature allows for more robust imagination than the deterministic autoencoder. VAE blocks.png
Applies Variational Inference to the Autoencoder. The middle layer is a set of means & variances for Gaussian distributions. The stochastic nature allows for more robust imagination than the deterministic autoencoder.

Of the networks bearing people's names, only Hopfield worked directly with neural networks. Boltzmann and Helmholtz came before artificial neural networks, but their work in physics and physiology inspired the analytical methods that were used.

History

1974Ising magnetic model proposed by WA Little  [ de ] for cognition
1980Fukushima introduces the neocognitron, which is later called a convolutional neural network. It is mostly used in SL, but deserves a mention here.
1982Ising variant Hopfield net described as CAMs and classifiers by John Hopfield.
1983Ising variant Boltzmann machine with probabilistic neurons described by Hinton & Sejnowski following Sherington & Kirkpatrick's 1975 work.
1986 Paul Smolensky publishes Harmony Theory, which is an RBM with practically the same Boltzmann energy function. Smolensky did not give a practical training scheme. Hinton did in mid-2000s.
1995Schmidthuber introduces the LSTM neuron for languages.
1995Dayan & Hinton introduces Helmholtz machine
2013Kingma, Rezende, & co. introduced Variational Autoencoders as Bayesian graphical probability network, with neural nets as components.

Specific Networks

Here, we highlight some characteristics of select networks. The details of each are given in the comparison table below.

Hopfield Network
Ferromagnetism inspired Hopfield networks. A neuron correspond to an iron domain with binary magnetic moments Up and Down, and neural connections correspond to the domain's influence on each other. Symmetric connections enable a global energy formulation. During inference the network updates each state using the standard activation step function. Symmetric weights and the right energy functions guarantees convergence to a stable activation pattern. Asymmetric weights are difficult to analyze. Hopfield nets are used as Content Addressable Memories (CAM).
Boltzmann Machine
These are stochastic Hopfield nets. Their state value is sampled from this pdf as follows: suppose a binary neuron fires with the Bernoulli probability p(1) = 1/3 and rests with p(0) = 2/3. One samples from it by taking a uniformly distributed random number y, and plugging it into the inverted cumulative distribution function, which in this case is the step function thresholded at 2/3. The inverse function = { 0 if x <= 2/3, 1 if x > 2/3 }.
Sigmoid Belief Net
Introduced by Radford Neal in 1992, this network applies ideas from probabilistic graphical models to neural networks. A key difference is that nodes in graphical models have pre-assigned meanings, whereas Belief Net neurons' features are determined after training. The network is a sparsely connected directed acyclic graph composed of binary stochastic neurons. The learning rule comes from Maximum Likelihood on p(X): Δwij sj * (si - pi), where pi = 1 / ( 1 + eweighted inputs into neuron i ). sj's are activations from an unbiased sample of the posterior distribution and this is problematic due to the Explaining Away problem raised by Judea Perl. Variational Bayesian methods uses a surrogate posterior and blatantly disregard this complexity.
Deep Belief Network
Introduced by Hinton, this network is a hybrid of RBM and Sigmoid Belief Network. The top 2 layers is an RBM and the second layer downwards form a sigmoid belief network. One trains it by the stacked RBM method and then throw away the recognition weights below the top RBM. As of 2009, 3-4 layers seems to be the optimal depth. [6]
Helmholtz machine
These are early inspirations for the Variational Auto Encoders. Its 2 networks combined into one—forward weights operates recognition and backward weights implements imagination. It is perhaps the first network to do both. Helmholtz did not work in machine learning but he inspired the view of "statistical inference engine whose function is to infer probable causes of sensory input". [7] the stochastic binary neuron outputs a probability that its state is 0 or 1. The data input is normally not considered a layer, but in the Helmholtz machine generation mode, the data layer receives input from the middle layer and has separate weights for this purpose, so it is considered a layer. Hence this network has 3 layers.
Variational autoencoder
These are inspired by Helmholtz machines and combines probability network with neural networks. An Autoencoder is a 3-layer CAM network, where the middle layer is supposed to be some internal representation of input patterns. The encoder neural network is a probability distribution qφ(z given x) and the decoder network is pθ(x given z). The weights are named phi & theta rather than W and V as in Helmholtz—a cosmetic difference. These 2 networks here can be fully connected, or use another NN scheme.

Comparison of networks

HopfieldBoltzmannRBMStacked RBMHelmholtzAutoencoderVAE
Usage & notablesCAM, traveling salesman problemCAM. The freedom of connections makes this network difficult to analyze.pattern recognition. used in MNIST digits and speech.recognition & imagination. trained with unsupervised pre-training and/or supervised fine tuning.imagination, mimicrylanguage: creative writing, translation. vision: enhancing blurry imagesgenerate realistic data
Neurondeterministic binary state. Activation = { 0 (or -1) if x is negative, 1 otherwise }stochastic binary Hopfield neuron← same. (extended to real-valued in mid 2000s)← same← samelanguage: LSTM. vision: local receptive fields. usually real valued relu activation.middle layer neurons encode means & variances for Gaussians. In run mode (inference), the output of the middle layer are sampled values from the Gaussians.
Connections1-layer with symmetric weights. No self-connections.2-layers. 1-hidden & 1-visible. symmetric weights.← same.
no lateral connections within a layer.
top layer is undirected, symmetric. other layers are 2-way, asymmetric.3-layers: asymmetric weights. 2 networks combined into 1.3-layers. The input is considered a layer even though it has no inbound weights. recurrent layers for NLP. feedforward convolutions for vision. input & output have the same neuron counts.3-layers: input, encoder, distribution sampler decoder. the sampler is not considered a layer
Inference & energyEnergy is given by Gibbs probability measure :← same← sameminimize KL divergenceinference is only feed-forward. previous UL networks ran forwards AND backwardsminimize error = reconstruction error - KLD
TrainingΔwij = si*sj, for +1/-1 neuronΔwij = e*(pij - p'ij). This is derived from minimizing KLD. e = learning rate, p' = predicted and p = actual distribution.Δwij = e*( < vi hj >data - < vi hj >equilibrium ). This is a form of contrastive divergence w/ Gibbs Sampling. "<>" are expectations.← similar. train 1-layer at a time. approximate equilibrium state with a 3-segment pass. no back propagation.wake-sleep 2 phase trainingback propagate the reconstruction errorreparameterize hidden state for backprop
Strengthresembles physical systems so it inherits their equations← same. hidden neurons act as internal representatation of the external worldfaster more practical training scheme than Boltzmann machinestrains quickly. gives hierarchical layer of featuresmildly anatomical. analyzable w/ information theory & statistical mechanics
Weaknesshard to train due to lateral connectionsequilibrium requires too many iterationsinteger & real-valued neurons are more complicated.

Hebbian Learning, ART, SOM

The classical example of unsupervised learning in the study of neural networks is Donald Hebb's principle, that is, neurons that fire together wire together. [8] In Hebbian learning, the connection is reinforced irrespective of an error, but is exclusively a function of the coincidence between action potentials between the two neurons. [9] A similar version that modifies synaptic weights takes into account the time between the action potentials (spike-timing-dependent plasticity or STDP). Hebbian Learning has been hypothesized to underlie a range of cognitive functions, such as pattern recognition and experiential learning.

Among neural network models, the self-organizing map (SOM) and adaptive resonance theory (ART) are commonly used in unsupervised learning algorithms. The SOM is a topographic organization in which nearby locations in the map represent inputs with similar properties. The ART model allows the number of clusters to vary with problem size and lets the user control the degree of similarity between members of the same clusters by means of a user-defined constant called the vigilance parameter. ART networks are used for many pattern recognition tasks, such as automatic target recognition and seismic signal processing. [10]

Probabilistic methods

Two of the main methods used in unsupervised learning are principal component and cluster analysis. Cluster analysis is used in unsupervised learning to group, or segment, datasets with shared attributes in order to extrapolate algorithmic relationships. [11] Cluster analysis is a branch of machine learning that groups the data that has not been labelled, classified or categorized. Instead of responding to feedback, cluster analysis identifies commonalities in the data and reacts based on the presence or absence of such commonalities in each new piece of data. This approach helps detect anomalous data points that do not fit into either group.

A central application of unsupervised learning is in the field of density estimation in statistics, [12] though unsupervised learning encompasses many other domains involving summarizing and explaining data features. It can be contrasted with supervised learning by saying that whereas supervised learning intends to infer a conditional probability distribution conditioned on the label of input data; unsupervised learning intends to infer an a priori probability distribution .

Approaches

Some of the most common algorithms used in unsupervised learning include: (1) Clustering, (2) Anomaly detection, (3) Approaches for learning latent variable models. Each approach uses several methods as follows:

Method of moments

One of the statistical approaches for unsupervised learning is the method of moments. In the method of moments, the unknown parameters (of interest) in the model are related to the moments of one or more random variables, and thus, these unknown parameters can be estimated given the moments. The moments are usually estimated from samples empirically. The basic moments are first and second order moments. For a random vector, the first order moment is the mean vector, and the second order moment is the covariance matrix (when the mean is zero). Higher order moments are usually represented using tensors which are the generalization of matrices to higher orders as multi-dimensional arrays.

In particular, the method of moments is shown to be effective in learning the parameters of latent variable models. Latent variable models are statistical models where in addition to the observed variables, a set of latent variables also exists which is not observed. A highly practical example of latent variable models in machine learning is the topic modeling which is a statistical model for generating the words (observed variables) in the document based on the topic (latent variable) of the document. In the topic modeling, the words in the document are generated according to different statistical parameters when the topic of the document is changed. It is shown that method of moments (tensor decomposition techniques) consistently recover the parameters of a large class of latent variable models under some assumptions. [15]

The Expectation–maximization algorithm (EM) is also one of the most practical methods for learning latent variable models. However, it can get stuck in local optima, and it is not guaranteed that the algorithm will converge to the true unknown parameters of the model. In contrast, for the method of moments, the global convergence is guaranteed under some conditions.

See also

Related Research Articles

<span class="mw-page-title-main">Neural network (machine learning)</span> Computational model used in machine learning, based on connected, hierarchical functions

In machine learning, a neural network is a model inspired by the structure and function of biological neural networks in animal brains.

<span class="mw-page-title-main">Nonlinear dimensionality reduction</span> Projection of data onto lower-dimensional manifolds

Nonlinear dimensionality reduction, also known as manifold learning, is any of various related techniques that aim to project high-dimensional data, potentially existing across non-linear manifolds which cannot be adequately captured by linear decomposition methods, onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.

<span class="mw-page-title-main">Boltzmann machine</span> Type of stochastic recurrent neural network

A Boltzmann machine, named after Ludwig Boltzmann is a spin-glass model with an external field, i.e., a Sherrington–Kirkpatrick model, that is a stochastic Ising model. It is a statistical physics technique applied in the context of cognitive science. It is also classified as a Markov random field.

A Hopfield network is a form of recurrent neural network, or a spin glass system, that can serve as a content-addressable memory. The Hopfield network, named for John Hopfield, consists of a single layer of neurons, where each neuron is connected to every other neuron except itself. These connections are bidirectional and symmetric, meaning the weight of the connection from neuron i to neuron j is the same as the weight from neuron j to neuron i. Patterns are associatively recalled by fixing certain inputs, and dynamically evolve the network to minimize an energy function, towards local energy minimum states that correspond to stored patterns. Patterns are associatively learned by a Hebbian learning algorithm.

The Helmholtz machine is a type of artificial neural network that can account for the hidden structure of a set of data by being trained to create a generative model of the original set of data. The hope is that by learning economical representations of the data, the underlying structure of the generative model should reasonably approximate the hidden structure of the data set. A Helmholtz machine contains two networks, a bottom-up recognition network that takes the data as input and produces a distribution over hidden variables, and a top-down "generative" network that generates values of the hidden variables and the data itself. At the time, Helmholtz machines were one of a handful of learning architectures that used feedback as well as feedforward to ensure quality of learned models.

<span class="mw-page-title-main">Autoencoder</span> Neural network that learns efficient data encoding in an unsupervised manner

An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data. An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation. The autoencoder learns an efficient representation (encoding) for a set of data, typically for dimensionality reduction, to generate lower-dimensional embeddings for subsequent use by other machine learning algorithms.

The generalized Hebbian algorithm, also known in the literature as Sanger's rule, is a linear feedforward neural network for unsupervised learning with applications primarily in principal components analysis. First defined in 1989, it is similar to Oja's rule in its formulation and stability, except it can be applied to networks with multiple outputs. The name originates because of the similarity between the algorithm and a hypothesis made by Donald Hebb about the way in which synaptic strengths in the brain are modified in response to experience, i.e., that changes are proportional to the correlation between the firing of pre- and post-synaptic neurons.

Competitive learning is a form of unsupervised learning in artificial neural networks, in which nodes compete for the right to respond to a subset of the input data. A variant of Hebbian learning, competitive learning works by increasing the specialization of each node in the network. It is well suited to finding clusters within data.

There are many types of artificial neural networks (ANN).

<span class="mw-page-title-main">Deep learning</span> Branch of machine learning

Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data. The adjective "deep" refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.

<span class="mw-page-title-main">Restricted Boltzmann machine</span> Class of artificial neural network

A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

<span class="mw-page-title-main">Wake-sleep algorithm</span> Unsupervised learning algorithm

The wake-sleep algorithm is an unsupervised learning algorithm for deep generative models, especially Helmholtz Machines. The algorithm is similar to the expectation-maximization algorithm, and optimizes the model likelihood for observed data. The name of the algorithm derives from its use of two learning phases, the “wake” phase and the “sleep” phase, which are performed alternately. It can be conceived as a model for learning in the brain, but is also being applied for machine learning.

An artificial neural network's learning rule or learning process is a method, mathematical logic or algorithm which improves the network's performance and/or training time. Usually, this rule is applied repeatedly over the network. It is done by updating the weight and bias levels of a network when it is simulated in a specific data environment. A learning rule may accept existing conditions of the network, and will compare the expected result and actual result of the network to give new and improved values for the weights and biases. Depending on the complexity of the model being simulated, the learning rule of the network can be as simple as an XOR gate or mean squared error, or as complex as the result of a system of differential equations.

<span class="mw-page-title-main">Feature learning</span> Set of learning techniques in machine learning

In machine learning (ML), feature learning or representation learning is a set of techniques that allow a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.

<span class="mw-page-title-main">Deep belief network</span> Type of artificial neural network

In machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables, with connections between the layers but not between units within each layer.

<span class="mw-page-title-main">Quantum machine learning</span> Interdisciplinary research area at the intersection of quantum physics and machine learning

Quantum machine learning is the integration of quantum algorithms within machine learning programs.

The following outline is provided as an overview of, and topical guide to, machine learning:

<span class="mw-page-title-main">Variational autoencoder</span> Deep learning generative model to encode data representation

In machine learning, a variational autoencoder (VAE) is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling. It is part of the families of probabilistic graphical models and variational Bayesian methods.

An energy-based model (EBM) is an application of canonical ensemble formulation from statistical physics for learning from data. The approach prominently appears in generative artificial intelligence.

Self-supervised learning (SSL) is a paradigm in machine learning where a model is trained on a task using the data itself to generate supervisory signals, rather than relying on externally-provided labels. In the context of neural networks, self-supervised learning aims to leverage inherent structures or relationships within the input data to create meaningful training signals. SSL tasks are designed so that solving them requires capturing essential features or relationships in the data. The input data is typically augmented or transformed in a way that creates pairs of related samples, where one sample serves as the input, and the other is used to formulate the supervisory signal. This augmentation can involve introducing noise, cropping, rotation, or other transformations. Self-supervised learning more closely imitates the way humans learn to classify objects.

References

  1. Wu, Wei. "Unsupervised Learning" (PDF). Archived (PDF) from the original on 14 April 2024. Retrieved 26 April 2024.
  2. Liu, Xiao; Zhang, Fanjin; Hou, Zhenyu; Mian, Li; Wang, Zhaoyu; Zhang, Jing; Tang, Jie (2021). "Self-supervised Learning: Generative or Contrastive". IEEE Transactions on Knowledge and Data Engineering: 1. arXiv: 2006.08218 . doi:10.1109/TKDE.2021.3090866. ISSN   1041-4347.
  3. Radford, Alec; Narasimhan, Karthik; Salimans, Tim; Sutskever, Ilya (11 June 2018). "Improving Language Understanding by Generative Pre-Training" (PDF). OpenAI. p. 12. Archived (PDF) from the original on 26 January 2021. Retrieved 23 January 2021.
  4. Li, Zhuohan; Wallace, Eric; Shen, Sheng; Lin, Kevin; Keutzer, Kurt; Klein, Dan; Gonzalez, Joey (2020-11-21). "Train Big, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers". Proceedings of the 37th International Conference on Machine Learning. PMLR: 5958–5968.
  5. Hinton, G. (2012). "A Practical Guide to Training Restricted Boltzmann Machines" (PDF). Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science. Vol. 7700. Springer. pp. 599–619. doi:10.1007/978-3-642-35289-8_32. ISBN   978-3-642-35289-8. Archived (PDF) from the original on 2022-09-03. Retrieved 2022-11-03.
  6. "Deep Belief Nets" (video). September 2009. Archived from the original on 2022-03-08. Retrieved 2022-03-27.{{cite web}}: Unknown parameter |people= ignored (help)
  7. Peter, Dayan; Hinton, Geoffrey E.; Neal, Radford M.; Zemel, Richard S. (1995). "The Helmholtz machine". Neural Computation. 7 (5): 889–904. doi:10.1162/neco.1995.7.5.889. hdl: 21.11116/0000-0002-D6D3-E . PMID   7584891. S2CID   1890561. Closed Access logo transparent.svg
  8. Buhmann, J.; Kuhnel, H. (1992). "Unsupervised and supervised data clustering with competitive neural networks". [Proceedings 1992] IJCNN International Joint Conference on Neural Networks. Vol. 4. IEEE. pp. 796–801. doi:10.1109/ijcnn.1992.227220. ISBN   0780305590. S2CID   62651220.
  9. Comesaña-Campos, Alberto; Bouza-Rodríguez, José Benito (June 2016). "An application of Hebbian learning in the design process decision-making". Journal of Intelligent Manufacturing. 27 (3): 487–506. doi:10.1007/s10845-014-0881-z. ISSN   0956-5515. S2CID   207171436.
  10. Carpenter, G.A. & Grossberg, S. (1988). "The ART of adaptive pattern recognition by a self-organizing neural network" (PDF). Computer. 21 (3): 77–88. doi:10.1109/2.33. S2CID   14625094. Archived from the original (PDF) on 2018-05-16. Retrieved 2013-09-16.
  11. Roman, Victor (2019-04-21). "Unsupervised Machine Learning: Clustering Analysis". Medium. Archived from the original on 2020-08-21. Retrieved 2019-10-01.
  12. Jordan, Michael I.; Bishop, Christopher M. (2004). "7. Intelligent Systems §Neural Networks". In Tucker, Allen B. (ed.). Computer Science Handbook (2nd ed.). Chapman & Hall/CRC Press. doi:10.1201/9780203494455. ISBN   1-58488-360-X. Archived from the original on 2022-11-03. Retrieved 2022-11-03.
  13. Hastie, Tibshirani & Friedman 2009, pp. 485–586
  14. Garbade, Dr Michael J. (2018-09-12). "Understanding K-means Clustering in Machine Learning". Medium. Archived from the original on 2019-05-28. Retrieved 2019-10-31.
  15. Anandkumar, Animashree; Ge, Rong; Hsu, Daniel; Kakade, Sham; Telgarsky, Matus (2014). "Tensor Decompositions for Learning Latent Variable Models" (PDF). Journal of Machine Learning Research. 15: 2773–2832. arXiv: 1210.7559 . Bibcode:2012arXiv1210.7559A. Archived (PDF) from the original on 2015-03-20. Retrieved 2015-04-10.

Further reading