Support vector machine

Last updated

In machine learning, support vector machines (SVMs, also support vector networks [1] ) are supervised max-margin models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories by Vladimir Vapnik with colleagues (Boser et al., 1992, Guyon et al., 1993, Cortes and Vapnik, 1995, [1] Vapnik et al., 1997 [2] ) SVMs are one of the most studied models, being based on statistical learning frameworks or VC theory proposed by Vapnik (1982, 1995) and Chervonenkis (1974).

Contents

In addition to performing linear classification, SVMs can efficiently perform a non-linear classification using what is called the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces. SVMs can also be used for regression tasks, where the objective becomes -sensitive.

The support vector clustering [3] algorithm, created by Hava Siegelmann and Vladimir Vapnik, applies the statistics of support vectors, developed in the support vector machines algorithm, to categorize unlabeled data.[ citation needed ] These data sets require unsupervised learning approaches, which attempt to find natural clustering of the data to groups and, then, to map new data according to these clusters.

The popularity of SVMs is likely due to their amenability to theoretical analysis, their flexibility in being applied to a wide variety of tasks, including structured prediction problems. It is not clear that SVMs have better predictive performance than other linear models, such as logistic regression and linear regression.[ citation needed ]

Motivation

H1 does not separate the classes. H2 does, but only with a small margin. H3 separates them with the maximal margin. Svm separating hyperplanes (SVG).svg
H1 does not separate the classes. H2 does, but only with a small margin. H3 separates them with the maximal margin.

Classifying data is a common task in machine learning. Suppose some given data points each belong to one of two classes, and the goal is to decide which class a new data point will be in. In the case of support vector machines, a data point is viewed as a -dimensional vector (a list of numbers), and we want to know whether we can separate such points with a -dimensional hyperplane. This is called a linear classifier. There are many hyperplanes that might classify the data. One reasonable choice as the best hyperplane is the one that represents the largest separation, or margin, between the two classes. So we choose the hyperplane so that the distance from it to the nearest data point on each side is maximized. If such a hyperplane exists, it is known as the maximum-margin hyperplane and the linear classifier it defines is known as a maximum-margin classifier ; or equivalently, the perceptron of optimal stability .[ citation needed ]

More formally, a support vector machine constructs a hyperplane or set of hyperplanes in a high or infinite-dimensional space, which can be used for classification, regression, or other tasks like outliers detection. [4] Intuitively, a good separation is achieved by the hyperplane that has the largest distance to the nearest training-data point of any class (so-called functional margin), since in general the larger the margin, the lower the generalization error of the classifier. [5] A lower generalization error means that the implementer is less likely to experience overfitting.

Kernel machine Kernel Machine.svg
Kernel machine

Whereas the original problem may be stated in a finite-dimensional space, it often happens that the sets to discriminate are not linearly separable in that space. For this reason, it was proposed [6] that the original finite-dimensional space be mapped into a much higher-dimensional space, presumably making the separation easier in that space. To keep the computational load reasonable, the mappings used by SVM schemes are designed to ensure that dot products of pairs of input data vectors may be computed easily in terms of the variables in the original space, by defining them in terms of a kernel function selected to suit the problem. [7] The hyperplanes in the higher-dimensional space are defined as the set of points whose dot product with a vector in that space is constant, where such a set of vectors is an orthogonal (and thus minimal) set of vectors that defines a hyperplane. The vectors defining the hyperplanes can be chosen to be linear combinations with parameters of images of feature vectors that occur in the data base. With this choice of a hyperplane, the points in the feature space that are mapped into the hyperplane are defined by the relation Note that if becomes small as grows further away from , each term in the sum measures the degree of closeness of the test point to the corresponding data base point . In this way, the sum of kernels above can be used to measure the relative nearness of each test point to the data points originating in one or the other of the sets to be discriminated. Note the fact that the set of points mapped into any hyperplane can be quite convoluted as a result, allowing much more complex discrimination between sets that are not convex at all in the original space.

Applications

SVMs can be used to solve various real-world problems:

History

The original SVM algorithm was invented by Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 1964.[ citation needed ] In 1992, Bernhard Boser, Isabelle Guyon and Vladimir Vapnik suggested a way to create nonlinear classifiers by applying the kernel trick to maximum-margin hyperplanes. [6] The "soft margin" incarnation, as is commonly used in software packages, was proposed by Corinna Cortes and Vapnik in 1993 and published in 1995. [1]

Linear SVM

Maximum-margin hyperplane and margins for an SVM trained with samples from two classes. Samples on the margin are called the support vectors. SVM margin.png
Maximum-margin hyperplane and margins for an SVM trained with samples from two classes. Samples on the margin are called the support vectors.

We are given a training dataset of points of the form

where the are either 1 or −1, each indicating the class to which the point belongs. Each is a -dimensional real vector. We want to find the "maximum-margin hyperplane" that divides the group of points for which from the group of points for which , which is defined so that the distance between the hyperplane and the nearest point from either group is maximized.

Any hyperplane can be written as the set of points satisfying

where is the (not necessarily normalized) normal vector to the hyperplane. This is much like Hesse normal form, except that is not necessarily a unit vector. The parameter determines the offset of the hyperplane from the origin along the normal vector .

Hard-margin

If the training data is linearly separable, we can select two parallel hyperplanes that separate the two classes of data, so that the distance between them is as large as possible. The region bounded by these two hyperplanes is called the "margin", and the maximum-margin hyperplane is the hyperplane that lies halfway between them. With a normalized or standardized dataset, these hyperplanes can be described by the equations

(anything on or above this boundary is of one class, with label 1)

and

(anything on or below this boundary is of the other class, with label −1).

Geometrically, the distance between these two hyperplanes is , [18] so to maximize the distance between the planes we want to minimize . The distance is computed using the distance from a point to a plane equation. We also have to prevent data points from falling into the margin, we add the following constraint: for each either

or

These constraints state that each data point must lie on the correct side of the margin.

This can be rewritten as

We can put this together to get the optimization problem:

The and that solve this problem determine our classifier, where is the sign function.

An important consequence of this geometric description is that the max-margin hyperplane is completely determined by those that lie nearest to it (explained below). These are called support vectors.

Soft-margin

To extend SVM to cases in which the data are not linearly separable, the hinge loss function is helpful

Note that is the i-th target (i.e., in this case, 1 or −1), and is the i-th output.

This function is zero if the constraint in (1) is satisfied, in other words, if lies on the correct side of the margin. For data on the wrong side of the margin, the function's value is proportional to the distance from the margin.

The goal of the optimization then is to minimize:

where the parameter determines the trade-off between increasing the margin size and ensuring that the lie on the correct side of the margin (Note we can add a weight to either term in the equation above). By deconstructing the hinge loss, this optimization problem can be massaged into the following:

Thus, for large values of , it will behave similar to the hard-margin SVM, if the input data are linearly classifiable, but will still learn if a classification rule is viable or not.

Nonlinear Kernels

Kernel machine Kernel Machine.svg
Kernel machine

The original maximum-margin hyperplane algorithm proposed by Vapnik in 1963 constructed a linear classifier. However, in 1992, Bernhard Boser, Isabelle Guyon and Vladimir Vapnik suggested a way to create nonlinear classifiers by applying the kernel trick (originally proposed by Aizerman et al. [19] ) to maximum-margin hyperplanes. [6] The resulting algorithm is formally similar, except that every dot product [ further explanation needed ] is replaced by a nonlinear kernel function.[ further explanation needed ] This allows the algorithm to fit the maximum-margin hyperplane in a transformed feature space. The transformation may be nonlinear and the transformed space high-dimensional; although the classifier is a hyperplane in the transformed feature space, it may be nonlinear in the original input space.

It is noteworthy that working in a higher-dimensional feature space increases the generalization error of support vector machines, although given enough samples the algorithm still performs well. [20]

Some common kernels include:

The kernel is related to the transform by the equation . The value w is also in the transformed space, with . Dot products with w for classification can again be computed by the kernel trick, i.e. .

Computing the SVM classifier

Computing the (soft-margin) SVM classifier amounts to minimizing an expression of the form

We focus on the soft-margin classifier since, as noted above, choosing a sufficiently small value for yields the hard-margin classifier for linearly classifiable input data. The classical approach, which involves reducing (2) to a quadratic programming problem, is detailed below. Then, more recent approaches such as sub-gradient descent and coordinate descent will be discussed.

Primal

Minimizing (2) can be rewritten as a constrained optimization problem with a differentiable objective function in the following way.

For each we introduce a variable . Note that is the smallest nonnegative number satisfying

Thus we can rewrite the optimization problem as follows

This is called the primal problem.

Dual

By solving for the Lagrangian dual of the above problem, one obtains the simplified problem

This is called the dual problem. Since the dual maximization problem is a quadratic function of the subject to linear constraints, it is efficiently solvable by quadratic programming algorithms.

Here, the variables are defined such that

Moreover, exactly when lies on the correct side of the margin, and when lies on the margin's boundary. It follows that can be written as a linear combination of the support vectors.

The offset, , can be recovered by finding an on the margin's boundary and solving

(Note that since .)

Kernel trick

A training example of SVM with kernel given by ph((a, b)) = (a, b, a + b ) Kernel trick idea.svg
A training example of SVM with kernel given by φ((a, b)) = (a, b, a + b )

Suppose now that we would like to learn a nonlinear classification rule which corresponds to a linear classification rule for the transformed data points Moreover, we are given a kernel function which satisfies .

We know the classification vector in the transformed space satisfies

where, the are obtained by solving the optimization problem

The coefficients can be solved for using quadratic programming, as before. Again, we can find some index such that , so that lies on the boundary of the margin in the transformed space, and then solve

Finally,

Modern methods

Recent algorithms for finding the SVM classifier include sub-gradient descent and coordinate descent. Both techniques have proven to offer significant advantages over the traditional approach when dealing with large, sparse datasets—sub-gradient methods are especially efficient when there are many training examples, and coordinate descent when the dimension of the feature space is high.

Sub-gradient descent

Sub-gradient descent algorithms for the SVM work directly with the expression

Note that is a convex function of and . As such, traditional gradient descent (or SGD) methods can be adapted, where instead of taking a step in the direction of the function's gradient, a step is taken in the direction of a vector selected from the function's sub-gradient. This approach has the advantage that, for certain implementations, the number of iterations does not scale with , the number of data points. [21]

Coordinate descent

Coordinate descent algorithms for the SVM work from the dual problem

For each , iteratively, the coefficient is adjusted in the direction of . Then, the resulting vector of coefficients is projected onto the nearest vector of coefficients that satisfies the given constraints. (Typically Euclidean distances are used.) The process is then repeated until a near-optimal vector of coefficients is obtained. The resulting algorithm is extremely fast in practice, although few performance guarantees have been proven. [22]

Empirical risk minimization

The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss . Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss. This perspective can provide further insight into how and why SVMs work, and allow us to better analyze their statistical properties.

Risk minimization

In supervised learning, one is given a set of training examples with labels , and wishes to predict given . To do so one forms a hypothesis, , such that is a "good" approximation of . A "good" approximation is usually defined with the help of a loss function,, which characterizes how bad is as a prediction of . We would then like to choose a hypothesis that minimizes the expected risk:

In most cases, we don't know the joint distribution of outright. In these cases, a common strategy is to choose the hypothesis that minimizes the empirical risk:

Under certain assumptions about the sequence of random variables (for example, that they are generated by a finite Markov process), if the set of hypotheses being considered is small enough, the minimizer of the empirical risk will closely approximate the minimizer of the expected risk as grows large. This approach is called empirical risk minimization, or ERM.

Regularization and stability

In order for the minimization problem to have a well-defined solution, we have to place constraints on the set of hypotheses being considered. If is a normed space (as is the case for SVM), a particularly effective technique is to consider only those hypotheses for which . This is equivalent to imposing a regularization penalty, and solving the new optimization problem

This approach is called Tikhonov regularization.

More generally, can be some measure of the complexity of the hypothesis , so that simpler hypotheses are preferred.

SVM and the hinge loss

Recall that the (soft-margin) SVM classifier is chosen to minimize the following expression:

In light of the above discussion, we see that the SVM technique is equivalent to empirical risk minimization with Tikhonov regularization, where in this case the loss function is the hinge loss

From this perspective, SVM is closely related to other fundamental classification algorithms such as regularized least-squares and logistic regression. The difference between the three lies in the choice of loss function: regularized least-squares amounts to empirical risk minimization with the square-loss, ; logistic regression employs the log-loss,

Target functions

The difference between the hinge loss and these other loss functions is best stated in terms of target functions - the function that minimizes expected risk for a given pair of random variables .

In particular, let denote conditional on the event that . In the classification setting, we have:

The optimal classifier is therefore:

For the square-loss, the target function is the conditional expectation function, ; For the logistic loss, it's the logit function, . While both of these target functions yield the correct classifier, as , they give us more information than we need. In fact, they give us enough information to completely describe the distribution of .

On the other hand, one can check that the target function for the hinge loss is exactly. Thus, in a sufficiently rich hypothesis space—or equivalently, for an appropriately chosen kernel—the SVM classifier will converge to the simplest function (in terms of ) that correctly classifies the data. This extends the geometric interpretation of SVM—for linear classification, the empirical risk is minimized by any function whose margins lie between the support vectors, and the simplest of these is the max-margin classifier. [23]

Properties

SVMs belong to a family of generalized linear classifiers and can be interpreted as an extension of the perceptron. They can also be considered a special case of Tikhonov regularization. A special property is that they simultaneously minimize the empirical classification error and maximize the geometric margin; hence they are also known as maximum margin classifiers .

A comparison of the SVM to other classifiers has been made by Meyer, Leisch and Hornik. [24]

Parameter selection

The effectiveness of SVM depends on the selection of kernel, the kernel's parameters, and soft margin parameter . A common choice is a Gaussian kernel, which has a single parameter . The best combination of and is often selected by a grid search with exponentially growing sequences of and , for example, ; . Typically, each combination of parameter choices is checked using cross validation, and the parameters with best cross-validation accuracy are picked. Alternatively, recent work in Bayesian optimization can be used to select and , often requiring the evaluation of far fewer parameter combinations than grid search. The final model, which is used for testing and for classifying new data, is then trained on the whole training set using the selected parameters. [25]

Issues

Potential drawbacks of the SVM include the following aspects:

Extensions

Support vector clustering (SVC)

SVC is a similar method that also builds on kernel functions but is appropriate for unsupervised learning. [ citation needed ]

Multiclass SVM

Multiclass SVM aims to assign labels to instances by using support vector machines, where the labels are drawn from a finite set of several elements.

The dominant approach for doing so is to reduce the single multiclass problem into multiple binary classification problems. [26] Common methods for such reduction include: [26] [27]

Crammer and Singer proposed a multiclass SVM method which casts the multiclass classification problem into a single optimization problem, rather than decomposing it into multiple binary classification problems. [30] See also Lee, Lin and Wahba [31] [32] and Van den Burg and Groenen. [33]

Transductive support vector machines

Transductive support vector machines extend SVMs in that they could also treat partially labeled data in semi-supervised learning by following the principles of transduction. Here, in addition to the training set , the learner is also given a set

of test examples to be classified. Formally, a transductive support vector machine is defined by the following primal optimization problem: [34]

Minimize (in )

subject to (for any and any )

and

Transductive support vector machines were introduced by Vladimir N. Vapnik in 1998.

Structured SVM

SVMs have been generalized to structured SVMs, where the label space is structured and of possibly infinite size.

Regression

Support vector regression (prediction) with different thresholds e. As e increases, the prediction becomes less sensitive to errors. Svr epsilons demo.svg
Support vector regression (prediction) with different thresholds ε. As ε increases, the prediction becomes less sensitive to errors.

A version of SVM for regression was proposed in 1996 by Vladimir N. Vapnik, Harris Drucker, Christopher J. C. Burges, Linda Kaufman and Alexander J. Smola. [35] This method is called support vector regression (SVR). The model produced by support vector classification (as described above) depends only on a subset of the training data, because the cost function for building the model does not care about training points that lie beyond the margin. Analogously, the model produced by SVR depends only on a subset of the training data, because the cost function for building the model ignores any training data close to the model prediction. Another SVM version known as least-squares support vector machine (LS-SVM) has been proposed by Suykens and Vandewalle. [36]

Training the original SVR means solving [37]

minimize
subject to

where is a training sample with target value . The inner product plus intercept is the prediction for that sample, and is a free parameter that serves as a threshold: all predictions have to be within an range of the true predictions. Slack variables are usually added into the above to allow for errors and to allow approximation in the case the above problem is infeasible.

Bayesian SVM

In 2011 it was shown by Polson and Scott that the SVM admits a Bayesian interpretation through the technique of data augmentation. [38] In this approach the SVM is viewed as a graphical model (where the parameters are connected via probability distributions). This extended view allows the application of Bayesian techniques to SVMs, such as flexible feature modeling, automatic hyperparameter tuning, and predictive uncertainty quantification. Recently, a scalable version of the Bayesian SVM was developed by Florian Wenzel, enabling the application of Bayesian SVMs to big data. [39] Florian Wenzel developed two different versions, a variational inference (VI) scheme for the Bayesian kernel support vector machine (SVM) and a stochastic version (SVI) for the linear Bayesian SVM. [40]

Implementation

The parameters of the maximum-margin hyperplane are derived by solving the optimization. There exist several specialized algorithms for quickly solving the quadratic programming (QP) problem that arises from SVMs, mostly relying on heuristics for breaking the problem down into smaller, more manageable chunks.

Another approach is to use an interior-point method that uses Newton-like iterations to find a solution of the Karush–Kuhn–Tucker conditions of the primal and dual problems. [41] Instead of solving a sequence of broken-down problems, this approach directly solves the problem altogether. To avoid solving a linear system involving the large kernel matrix, a low-rank approximation to the matrix is often used in the kernel trick.

Another common method is Platt's sequential minimal optimization (SMO) algorithm, which breaks the problem down into 2-dimensional sub-problems that are solved analytically, eliminating the need for a numerical optimization algorithm and matrix storage. This algorithm is conceptually simple, easy to implement, generally faster, and has better scaling properties for difficult SVM problems. [42]

The special case of linear support vector machines can be solved more efficiently by the same kind of algorithms used to optimize its close cousin, logistic regression; this class of algorithms includes sub-gradient descent (e.g., PEGASOS [43] ) and coordinate descent (e.g., LIBLINEAR [44] ). LIBLINEAR has some attractive training-time properties. Each convergence iteration takes time linear in the time taken to read the train data, and the iterations also have a Q-linear convergence property, making the algorithm extremely fast.

The general kernel SVMs can also be solved more efficiently using sub-gradient descent (e.g. P-packSVM [45] ), especially when parallelization is allowed.

Kernel SVMs are available in many machine-learning toolkits, including LIBSVM, MATLAB, SAS, SVMlight, kernlab, scikit-learn, Shogun, Weka, Shark, JKernelMachines, OpenCV and others.

Preprocessing of data (standardization) is highly recommended to enhance accuracy of classification. [46] There are a few methods of standardization, such as min-max, normalization by decimal scaling, Z-score. [47] Subtraction of mean and division by variance of each feature is usually used for SVM. [48]

See also

Related Research Articles

In the field of machine learning, the goal of statistical classification is to use an object's characteristics to identify which class it belongs to. A linear classifier achieves this by making a classification decision based on the value of a linear combination of the characteristics. An object's characteristics are also known as feature values and are typically presented to the machine in a vector called a feature vector. Such classifiers work well for practical problems such as document classification, and more generally for problems with many variables (features), reaching accuracy levels comparable to non-linear classifiers while taking less time to train and use. 5–12–23

In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector.

<span class="mw-page-title-main">Projection (linear algebra)</span> Idempotent linear transformation from a vector space to itself

In linear algebra and functional analysis, a projection is a linear transformation from a vector space to itself such that . That is, whenever is applied twice to any vector, it gives the same result as if it were applied once. It leaves its image unchanged. This definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object.

<span class="mw-page-title-main">Linear separability</span>

In Euclidean geometry, linear separability is a property of two sets of points. This is most easily visualized in two dimensions by thinking of one set of points as being colored blue and the other set of points as being colored red. These two sets are linearly separable if there exists at least one line in the plane with all of the blue points on one side of the line and all the red points on the other side. This idea immediately generalizes to higher-dimensional Euclidean spaces if the line is replaced by a hyperplane.

Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time. For classification tasks, the output of the random forest is the class selected by most trees. For regression tasks, the mean or average prediction of the individual trees is returned. Random decision forests correct for decision trees' habit of overfitting to their training set.

In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. The general task of pattern analysis is to find and study general types of relations in datasets. For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products. The feature map in kernel machines is infinite dimensional but only requires a finite dimensional matrix from user-input according to the Representer theorem. Kernel machines are slow to compute for datasets larger than a couple of thousand examples without parallel processing.

In mathematics, a Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and probabilistic classification. The RVM has an identical functional form to the support vector machine, but provides probabilistic classification.

Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations. There are many similarities to linear least squares, but also some significant differences. In economic theory, the non-linear least squares method is applied in (i) the probit regression, (ii) threshold regression, (iii) smooth regression, (iv) logistic link regression, (v) Box–Cox transformed regressors ().

The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification, multiclass classification and regression, the structured SVM allows training of a classifier for general structured output labels.

Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. SMO is widely used for training support vector machines and is implemented by the popular LIBSVM tool. The publication of the SMO algorithm in 1998 has generated a lot of excitement in the SVM community, as previously available methods for SVM training were much more complex and required expensive third-party QP solvers.

Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis. In this version one finds the solution by solving a set of linear equations instead of a convex quadratic programming (QP) problem for classical SVMs. Least-squares SVM classifiers were proposed by Johan Suykens and Joos Vandewalle. LS-SVMs are a class of kernel-based learning methods.

<span class="mw-page-title-main">Hinge loss</span> Loss function in machine learning

In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs).

In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems. The ranking SVM algorithm was published by Thorsten Joachims in 2002. The original purpose of the algorithm was to improve the performance of an internet search engine. However, it was found that ranking SVM also can be used to solve other problems such as Rank SIFT.

Within mathematical analysis, Regularization perspectives on support-vector machines provide a way of interpreting support-vector machines (SVMs) in the context of other regularization-based machine-learning algorithms. SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator of the weights. Estimators with lower Mean squared error predict better or generalize better when given unseen data.

<span class="mw-page-title-main">Polynomial kernel</span> Machine learning kernel function

In machine learning, the polynomial kernel is a kernel function commonly used with support vector machines (SVMs) and other kernelized models, that represents the similarity of vectors in a feature space over polynomials of the original variables, allowing learning of non-linear models.

In machine learning, the radial basis function kernel, or RBF kernel, is a popular kernel function used in various kernelized learning algorithms. In particular, it is commonly used in support vector machine classification.

In machine learning, the kernel perceptron is a variant of the popular perceptron learning algorithm that can learn kernel machines, i.e. non-linear classifiers that employ a kernel function to compute the similarity of unseen samples to training samples. The algorithm was invented in 1964, making it the first kernel classification learner.

In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes. The method was invented by John Platt in the context of support vector machines, replacing an earlier method by Vapnik, but can be applied to other classification models. Platt scaling works by fitting a logistic regression model to a classifier's scores.

<span class="mw-page-title-main">Manifold regularization</span>

In machine learning, Manifold regularization is a technique for using the shape of a dataset to constrain the functions that should be learned on that dataset. In many machine learning problems, the data to be learned do not cover the entire input space. For example, a facial recognition system may not need to classify any possible image, but only the subset of images that contain faces. The technique of manifold learning assumes that the relevant subset of data comes from a manifold, a mathematical structure with useful properties. The technique also assumes that the function to be learned is smooth: data with different labels are not likely to be close together, and so the labeling function should not change quickly in areas where there are likely to be many data points. Because of this assumption, a manifold regularization algorithm can use unlabeled data to inform where the learned function is allowed to change quickly and where it is not, using an extension of the technique of Tikhonov regularization. Manifold regularization algorithms can extend supervised learning algorithms in semi-supervised learning and transductive learning settings, where unlabeled data are available. The technique has been used for applications including medical imaging, geographical imaging, and object recognition.

Weak supervision is a paradigm in machine learning, the relevance and notability of which increased with the advent of large language models due to large amount of data required to train them. It is characterized by using a combination of a small amount of human-labeled data, followed by a large amount of unlabeled data. In other words, the desired output values are provided only for a subset of the training data. The remaining data is unlabeled or imprecisely labeled. Intuitively, it can be seen as an exam and labeled data as sample problems that the teacher solves for the class as an aid in solving another set of problems. In the transductive setting, these unsolved problems act as exam questions. In the inductive setting, they become practice problems of the sort that will make up the exam. Technically, it could be viewed as performing clustering and then labeling the clusters with the labeled data, pushing the decision boundary away from high-density regions, or learning an underlying one-dimensional manifold where the data reside.

References

  1. 1 2 3 Cortes, Corinna; Vapnik, Vladimir (1995). "Support-vector networks" (PDF). Machine Learning . 20 (3): 273–297. CiteSeerX   10.1.1.15.9362 . doi: 10.1007/BF00994018 . S2CID   206787478.
  2. Vapnik, Vladimir N. (1997). Gerstner, Wulfram; Germond, Alain; Hasler, Martin; Nicoud, Jean-Daniel (eds.). "The Support Vector method". Artificial Neural Networks — ICANN'97. Berlin, Heidelberg: Springer: 261–271. doi:10.1007/BFb0020166. ISBN   978-3-540-69620-9.
  3. Ben-Hur, Asa; Horn, David; Siegelmann, Hava; Vapnik, Vladimir N. ""Support vector clustering" (2001);". Journal of Machine Learning Research. 2: 125–137.
  4. "1.4. Support Vector Machines — scikit-learn 0.20.2 documentation". Archived from the original on 2017-11-08. Retrieved 2017-11-08.
  5. Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome (2008). The Elements of Statistical Learning : Data Mining, Inference, and Prediction (PDF) (Second ed.). New York: Springer. p. 134.
  6. 1 2 3 Boser, Bernhard E.; Guyon, Isabelle M.; Vapnik, Vladimir N. (1992). "A training algorithm for optimal margin classifiers". Proceedings of the fifth annual workshop on Computational learning theory – COLT '92. p. 144. CiteSeerX   10.1.1.21.3818 . doi:10.1145/130385.130401. ISBN   978-0897914970. S2CID   207165665.
  7. Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (2007). "Section 16.5. Support Vector Machines". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN   978-0-521-88068-8. Archived from the original on 2011-08-11.
  8. Joachims, Thorsten (1998). "Text categorization with Support Vector Machines: Learning with many relevant features". Machine Learning: ECML-98. Lecture Notes in Computer Science. Vol. 1398. Springer. pp. 137–142. doi: 10.1007/BFb0026683 . ISBN   978-3-540-64417-0.
  9. Pradhan, Sameer S.; et al. (2 May 2004). Shallow Semantic Parsing using Support Vector Machines. Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004. Association for Computational Linguistics. pp. 233–240.
  10. Vapnik, Vladimir N.: Invited Speaker. IPMU Information Processing and Management 2014).
  11. Barghout, Lauren (2015). "Spatial-Taxon Information Granules as Used in Iterative Fuzzy-Decision-Making for Image Segmentation" (PDF). Granular Computing and Decision-Making. Studies in Big Data. Vol. 10. pp. 285–318. doi:10.1007/978-3-319-16829-6_12. ISBN   978-3-319-16828-9. S2CID   4154772. Archived from the original (PDF) on 2018-01-08. Retrieved 2018-01-08.
  12. A. Maity (2016). "Supervised Classification of RADARSAT-2 Polarimetric Data for Different Land Features". arXiv: 1608.00501 [cs.CV].
  13. DeCoste, Dennis (2002). "Training Invariant Support Vector Machines" (PDF). Machine Learning. 46: 161–190. doi: 10.1023/A:1012454411458 . S2CID   85843.
  14. Maitra, D. S.; Bhattacharya, U.; Parui, S. K. (August 2015). "CNN based common approach to handwritten character recognition of multiple scripts". 2015 13th International Conference on Document Analysis and Recognition (ICDAR). pp. 1021–1025. doi:10.1109/ICDAR.2015.7333916. ISBN   978-1-4799-1805-8. S2CID   25739012.
  15. Gaonkar, B.; Davatzikos, C. (2013). "Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification". NeuroImage. 78: 270–283. doi:10.1016/j.neuroimage.2013.03.066. PMC   3767485 . PMID   23583748.
  16. Cuingnet, Rémi; Rosso, Charlotte; Chupin, Marie; Lehéricy, Stéphane; Dormont, Didier; Benali, Habib; Samson, Yves; Colliot, Olivier (2011). "Spatial regularization of SVM for the detection of diffusion alterations associated with stroke outcome" (PDF). Medical Image Analysis. 15 (5): 729–737. doi:10.1016/j.media.2011.05.007. PMID   21752695. Archived from the original (PDF) on 2018-12-22. Retrieved 2018-01-08.
  17. Statnikov, Alexander; Hardin, Douglas; & Aliferis, Constantin; (2006); "Using SVM weight-based methods to identify causally relevant and non-causally relevant variables", Sign, 1, 4.
  18. "Why is the SVM margin equal to ". Mathematics Stack Exchange. 30 May 2015.
  19. Aizerman, Mark A.; Braverman, Emmanuel M. & Rozonoer, Lev I. (1964). "Theoretical foundations of the potential function method in pattern recognition learning". Automation and Remote Control. 25: 821–837.
  20. Jin, Chi; Wang, Liwei (2012). Dimensionality dependent PAC-Bayes margin bound. Advances in Neural Information Processing Systems. CiteSeerX   10.1.1.420.3487 . Archived from the original on 2015-04-02.
  21. Shalev-Shwartz, Shai; Singer, Yoram; Srebro, Nathan; Cotter, Andrew (2010-10-16). "Pegasos: primal estimated sub-gradient solver for SVM". Mathematical Programming. 127 (1): 3–30. CiteSeerX   10.1.1.161.9629 . doi:10.1007/s10107-010-0420-4. ISSN   0025-5610. S2CID   53306004.
  22. Hsieh, Cho-Jui; Chang, Kai-Wei; Lin, Chih-Jen; Keerthi, S. Sathiya; Sundararajan, S. (2008-01-01). "A dual coordinate descent method for large-scale linear SVM". Proceedings of the 25th international conference on Machine learning - ICML '08. New York, NY, USA: ACM. pp. 408–415. CiteSeerX   10.1.1.149.5594 . doi:10.1145/1390156.1390208. ISBN   978-1-60558-205-4. S2CID   7880266.
  23. Rosasco, Lorenzo; De Vito, Ernesto; Caponnetto, Andrea; Piana, Michele; Verri, Alessandro (2004-05-01). "Are Loss Functions All the Same?". Neural Computation. 16 (5): 1063–1076. CiteSeerX   10.1.1.109.6786 . doi:10.1162/089976604773135104. ISSN   0899-7667. PMID   15070510. S2CID   11845688.
  24. Meyer, David; Leisch, Friedrich; Hornik, Kurt (September 2003). "The support vector machine under test". Neurocomputing. 55 (1–2): 169–186. doi:10.1016/S0925-2312(03)00431-4.
  25. Hsu, Chih-Wei; Chang, Chih-Chung & Lin, Chih-Jen (2003). A Practical Guide to Support Vector Classification (PDF) (Technical report). Department of Computer Science and Information Engineering, National Taiwan University. Archived (PDF) from the original on 2013-06-25.
  26. 1 2 Duan, Kai-Bo; Keerthi, S. Sathiya (2005). "Which Is the Best Multiclass SVM Method? An Empirical Study" (PDF). Multiple Classifier Systems. LNCS. Vol. 3541. pp. 278–285. CiteSeerX   10.1.1.110.6789 . doi:10.1007/11494683_28. ISBN   978-3-540-26306-7. Archived from the original (PDF) on 2013-05-03. Retrieved 2019-07-18.
  27. Hsu, Chih-Wei & Lin, Chih-Jen (2002). "A Comparison of Methods for Multiclass Support Vector Machines" (PDF). IEEE Transactions on Neural Networks. 13 (2): 415–25. doi:10.1109/72.991427. PMID   18244442. Archived from the original (PDF) on 2013-05-03. Retrieved 2018-01-08.
  28. Platt, John; Cristianini, Nello; Shawe-Taylor, John (2000). "Large margin DAGs for multiclass classification" (PDF). In Solla, Sara A.; Leen, Todd K.; Müller, Klaus-Robert (eds.). Advances in Neural Information Processing Systems. MIT Press. pp. 547–553. Archived (PDF) from the original on 2012-06-16.
  29. Dietterich, Thomas G.; Bakiri, Ghulum (1995). "Solving Multiclass Learning Problems via Error-Correcting Output Codes" (PDF). Journal of Artificial Intelligence Research. 2: 263–286. arXiv: cs/9501101 . Bibcode:1995cs........1101D. doi:10.1613/jair.105. S2CID   47109072. Archived (PDF) from the original on 2013-05-09.
  30. Crammer, Koby & Singer, Yoram (2001). "On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines" (PDF). Journal of Machine Learning Research. 2: 265–292. Archived (PDF) from the original on 2015-08-29.
  31. Lee, Yoonkyung; Lin, Yi & Wahba, Grace (2001). "Multicategory Support Vector Machines" (PDF). Computing Science and Statistics. 33. Archived (PDF) from the original on 2013-06-17.
  32. Lee, Yoonkyung; Lin, Yi; Wahba, Grace (2004). "Multicategory Support Vector Machines". Journal of the American Statistical Association. 99 (465): 67–81. CiteSeerX   10.1.1.22.1879 . doi:10.1198/016214504000000098. S2CID   7066611.
  33. Van den Burg, Gerrit J. J. & Groenen, Patrick J. F. (2016). "GenSVM: A Generalized Multiclass Support Vector Machine" (PDF). Journal of Machine Learning Research. 17 (224): 1–42.
  34. Joachims, Thorsten. Transductive Inference for Text Classification using Support Vector Machines (PDF). Proceedings of the 1999 International Conference on Machine Learning (ICML 1999). pp. 200–209.
  35. Drucker, Harris; Burges, Christ. C.; Kaufman, Linda; Smola, Alexander J.; and Vapnik, Vladimir N. (1997); "Support Vector Regression Machines", in Advances in Neural Information Processing Systems 9, NIPS 1996, 155–161, MIT Press.
  36. Suykens, Johan A. K.; Vandewalle, Joos P. L.; "Least squares support vector machine classifiers", Neural Processing Letters, vol. 9, no. 3, Jun. 1999, pp. 293–300.
  37. Smola, Alex J.; Schölkopf, Bernhard (2004). "A tutorial on support vector regression" (PDF). Statistics and Computing. 14 (3): 199–222. CiteSeerX   10.1.1.41.1452 . doi:10.1023/B:STCO.0000035301.49549.88. S2CID   15475. Archived (PDF) from the original on 2012-01-31.
  38. Polson, Nicholas G.; Scott, Steven L. (2011). "Data Augmentation for Support Vector Machines". Bayesian Analysis. 6 (1): 1–23. doi: 10.1214/11-BA601 .
  39. Wenzel, Florian; Galy-Fajou, Theo; Deutsch, Matthäus; Kloft, Marius (2017). "Bayesian Nonlinear Support Vector Machines for Big Data". Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science. Vol. 10534. pp. 307–322. arXiv: 1707.05532 . Bibcode:2017arXiv170705532W. doi:10.1007/978-3-319-71249-9_19. ISBN   978-3-319-71248-2. S2CID   4018290.
  40. Florian Wenzel; Matthäus Deutsch; Théo Galy-Fajou; Marius Kloft; ”Scalable Approximate Inference for the Bayesian Nonlinear Support Vector Machine”
  41. Ferris, Michael C.; Munson, Todd S. (2002). "Interior-Point Methods for Massive Support Vector Machines" (PDF). SIAM Journal on Optimization. 13 (3): 783–804. CiteSeerX   10.1.1.216.6893 . doi:10.1137/S1052623400374379. S2CID   13563302. Archived (PDF) from the original on 2008-12-04.
  42. Platt, John C. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines (PDF). NIPS. Archived (PDF) from the original on 2015-07-02.
  43. Shalev-Shwartz, Shai; Singer, Yoram; Srebro, Nathan (2007). Pegasos: Primal Estimated sub-GrAdient SOlver for SVM (PDF). ICML. Archived (PDF) from the original on 2013-12-15.
  44. Fan, Rong-En; Chang, Kai-Wei; Hsieh, Cho-Jui; Wang, Xiang-Rui; Lin, Chih-Jen (2008). "LIBLINEAR: A library for large linear classification" (PDF). Journal of Machine Learning Research . 9: 1871–1874.
  45. Allen Zhu, Zeyuan; Chen, Weizhu; Wang, Gang; Zhu, Chenguang; Chen, Zheng (2009). P-packSVM: Parallel Primal grAdient desCent Kernel SVM (PDF). ICDM. Archived (PDF) from the original on 2014-04-07.
  46. Fan, Rong-En; Chang, Kai-Wei; Hsieh, Cho-Jui; Wang, Xiang-Rui; Lin, Chih-Jen (2008). "LIBLINEAR: A library for large linear classification". Journal of Machine Learning Research. 9 (Aug): 1871–1874.
  47. Mohamad, Ismail; Usman, Dauda (2013-09-01). "Standardization and Its Effects on K-Means Clustering Algorithm". Research Journal of Applied Sciences, Engineering and Technology. 6 (17): 3299–3303. doi: 10.19026/rjaset.6.3638 .
  48. Fennell, Peter; Zuo, Zhiya; Lerman, Kristina (2019-12-01). "Predicting and explaining behavioral data with structured feature space decomposition". EPJ Data Science. 8. arXiv: 1810.09841 . doi: 10.1140/epjds/s13688-019-0201-0 .

Further reading