Feedforward neural network

Last updated
In a feedforward network, information always moves in one direction; it never goes backwards. Feed forward neural net.gif
In a feedforward network, information always moves in one direction; it never goes backwards.
Simplified neural network training example.svg
Simplified example of training a neural network for object detection: The network is trained on multiple images depicting either starfish or sea urchins, which are correlated with "nodes" that represent visual features. The starfish match with a ringed texture and a star outline, whereas most sea urchins match with a striped texture and oval shape. However, the instance of a ring-textured sea urchin creates a weakly weighted association between them.
Simplified neural network example.svg
Subsequent run of the network on an input image (left): [1] The network correctly detects the starfish. However, the weakly weighted association between ringed texture and sea urchin also confers a weak signal to the latter from one of two intermediate nodes. In addition, a shell that was not included in the training gives a weak signal for the oval shape, also resulting in a weak signal for the sea urchin output. These weak signals may result in a false positive result for sea urchin.
In reality, textures and outlines would not be represented by single nodes, but rather by associated weight patterns of multiple nodes.

Feedforward refers to recognition-inference architecture of neural networks. Artificial neural network architectures are based on inputs multiplied by weights to obtain outputs (inputs-to-output): feedforward [2] . Recurrent neural networks, or neural networks with loops allow information from later processing stages to feed back to earlier stages for sequence processing [3] . However, at every stage of inference a feedforward multiplication remains the core, essential for backpropagation [4] [5] [6] [7] [8] or backpropagation through time. Thus neural networks cannot contain feedback like negative feedback or positive feedback where the outputs feed back to the very same inputs and modify them, because this forms an infinite loop which is not possible to rewind in time to generate an error signal through backpropagation. This issue and nomenclature appear to be a point of confusion between some computer scientists and scientists in other fields studying brain networks [9] .

Contents

Mathematical foundations

Activation function

The two historically common activation functions are both sigmoids, and are described by

.

The first is a hyperbolic tangent that ranges from -1 to 1, while the other is the logistic function, which is similar in shape but ranges from 0 to 1. Here is the output of the th node (neuron) and is the weighted sum of the input connections. Alternative activation functions have been proposed, including the rectifier and softplus functions. More specialized activation functions include radial basis functions (used in radial basis networks, another class of supervised neural network models).

In recent developments of deep learning the rectified linear unit (ReLU) is more frequently used as one of the possible ways to overcome the numerical problems related to the sigmoids.

Learning

Learning occurs by changing connection weights after each piece of data is processed, based on the amount of error in the output compared to the expected result. This is an example of supervised learning, and is carried out through backpropagation.

We can represent the degree of error in an output node in the th data point (training example) by , where is the desired target value for th data point at node , and is the value produced at node when the th data point is given as an input.

The node weights can then be adjusted based on corrections that minimize the error in the entire output for the th data point, given by

.

Using gradient descent, the change in each weight is

where is the output of the previous neuron , and is the learning rate , which is selected to ensure that the weights quickly converge to a response, without oscillations. In the previous expression, denotes the partial derivate of the error according to the weighted sum of the input connections of neuron .

The derivative to be calculated depends on the induced local field , which itself varies. It is easy to prove that for an output node this derivative can be simplified to

where is the derivative of the activation function described above, which itself does not vary. The analysis is more difficult for the change in weights to a hidden node, but it can be shown that the relevant derivative is

.

This depends on the change in weights of the th nodes, which represent the output layer. So to change the hidden layer weights, the output layer weights change according to the derivative of the activation function, and so this algorithm represents a backpropagation of the activation function. [10]

History

Timeline

Linear regression

Perceptron

If using a threshold, i.e. a linear activation function, the resulting linear threshold unit is called a perceptron . (Often the term is used to denote just one of these units.) Multiple parallel non-linear units are able to approximate any continuous function from a compact interval of the real numbers into the interval [−1,1] despite the limited computational power of single unit with a linear threshold function. [31]

Perceptrons can be trained by a simple learning algorithm that is usually called the delta rule . It calculates the errors between calculated output and sample output data, and uses this to create an adjustment to the weights, thus implementing a form of gradient descent.

Multilayer perceptron

A two-layer neural network capable of calculating XOR. The numbers within the neurons represent each neuron's explicit threshold. The numbers that annotate arrows represent the weight of the inputs. Note that If the threshold of 2 is met then a value of 1 is used for the weight multiplication to the next layer. Not meeting the threshold results in 0 being used. The bottom layer of inputs is not always considered a real neural network layer. XOR perceptron net.png
A two-layer neural network capable of calculating XOR. The numbers within the neurons represent each neuron's explicit threshold. The numbers that annotate arrows represent the weight of the inputs. Note that If the threshold of 2 is met then a value of 1 is used for the weight multiplication to the next layer. Not meeting the threshold results in 0 being used. The bottom layer of inputs is not always considered a real neural network layer.

A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not linearly separable. [32]

Other feedforward networks

1D convolutional neural network feed forward example 1D Convolutional Neural Network feed forward example.png
1D convolutional neural network feed forward example

Examples of other feedforward networks include convolutional neural networks and radial basis function networks, which use a different activation function.

See also

Related Research Articles

<span class="mw-page-title-main">Neural network (machine learning)</span> Computational model used in machine learning, based on connected, hierarchical functions

In machine learning, a neural network is a model inspired by the structure and function of biological neural networks in animal brains.

In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector.

<span class="mw-page-title-main">Artificial neuron</span> Mathematical function conceived as a crude model

An artificial neuron is a mathematical function conceived as a model of a biological neuron in a neural network. The artificial neuron is the elementary unit of an artificial neural network.

A Hopfield network is a form of recurrent neural network, or a spin glass system, that can serve as a content-addressable memory. The Hopfield network, named for John Hopfield, consists of a single layer of neurons, where each neuron is connected to every other neuron except itself. These connections are bidirectional and symmetric, meaning the weight of the connection from neuron i to neuron j is the same as the weight from neuron j to neuron i. Patterns are associatively recalled by fixing certain inputs, and dynamically evolve the network to minimize an energy function, towards local energy minimum states that correspond to stored patterns. Patterns are associatively learned by a Hebbian learning algorithm.

In machine learning, the delta rule is a gradient descent learning rule for updating the weights of the inputs to artificial neurons in a single-layer neural network. It can be derived as the backpropagation algorithm for a single-layer neural network with mean-square error loss function.

In machine learning, backpropagation is a gradient estimation method commonly used for training a neural network to compute its parameter updates.

Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.

In deep learning, a multilayer perceptron (MLP) is a name for a modern feedforward neural network consisting of fully connected neurons with nonlinear activation functions, organized in layers, notable for being able to distinguish data that is not linearly separable.

<span class="mw-page-title-main">Quantum neural network</span> Quantum Mechanics in Neural Networks

Quantum neural networks are computational neural network models which are based on the principles of quantum mechanics. The first ideas on quantum neural computation were published independently in 1995 by Subhash Kak and Ron Chrisley, engaging with the theory of quantum mind, which posits that quantum effects play a role in cognitive function. However, typical research in quantum neural networks involves combining classical artificial neural network models with the advantages of quantum information in order to develop more efficient algorithms. One important motivation for these investigations is the difficulty to train classical neural networks, especially in big data applications. The hope is that features of quantum computing such as quantum parallelism or the effects of interference and entanglement can be used as resources. Since the technological implementation of a quantum computer is still in a premature stage, such quantum neural network models are mostly theoretical proposals that await their full implementation in physical experiments.

<span class="mw-page-title-main">ADALINE</span> Early single-layer artificial neural network

ADALINE is an early single-layer artificial neural network and the name of the physical device that implemented it. It was developed by professor Bernard Widrow and his doctoral student Marcian Hoff at Stanford University in 1960. It is based on the perceptron and consists of weights, a bias, and a summation function. The weights and biases were implemented by rheostats, and later, memistors.

<span class="mw-page-title-main">Activation function</span> Artificial neural network node function

The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear. Modern activation functions include the smooth version of the ReLU, the GELU, which was used in the 2018 BERT model, the logistic (sigmoid) function used in the 2012 speech recognition model developed by Hinton et al, the ReLU used in the 2012 AlexNet computer vision model and in the 2015 ResNet model.

In the mathematical theory of artificial neural networks, universal approximation theorems are theorems of the following form: Given a family of neural networks, for each function from a certain function space, there exists a sequence of neural networks from the family, such that according to some criterion. That is, the family of neural networks is dense in the function space.

Backpropagation through time (BPTT) is a gradient-based technique for training certain types of recurrent neural networks, such as Elman networks. The algorithm was independently derived by numerous researchers.

There are many types of artificial neural networks (ANN).

An artificial neural network's learning rule or learning process is a method, mathematical logic or algorithm which improves the network's performance and/or training time. Usually, this rule is applied repeatedly over the network. It is done by updating the weight and bias levels of a network when it is simulated in a specific data environment. A learning rule may accept existing conditions of the network, and will compare the expected result and actual result of the network to give new and improved values for the weights and biases. Depending on the complexity of the model being simulated, the learning rule of the network can be as simple as an XOR gate or mean squared error, or as complex as the result of a system of differential equations.

Extreme learning machines are feedforward neural networks for classification, regression, clustering, sparse approximation, compression and feature learning with a single layer or multiple layers of hidden nodes, where the parameters of hidden nodes need to be tuned. These hidden nodes can be randomly assigned and never updated, or can be inherited from their ancestors without being changed. In most cases, the output weights of hidden nodes are usually learned in a single step, which essentially amounts to learning a linear model.

<span class="mw-page-title-main">Residual neural network</span> Type of artificial neural network

A residual neural network is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition, and won the ImageNet Large Scale Visual Recognition Challenge of that year.

An artificial neural network (ANN) combines biological principles with advanced statistics to solve problems in domains such as pattern recognition and game-play. ANNs adopt the basic model of neuron analogues connected to each other in a variety of ways.

Neural operators are a class of deep learning architectures designed to learn maps between infinite-dimensional function spaces. Neural operators represent an extension of traditional artificial neural networks, marking a departure from the typical focus on learning mappings between finite-dimensional Euclidean spaces or finite sets. Neural operators directly learn operators between function spaces; they can receive input functions, and the output function can be evaluated at any discretization.

In deep learning, weight initialization describes the initial step in creating a neural network. A neural network contains trainable parameters that are modified during training: weight initialization is the pre-training step of assigning initial values to these parameters.

References

  1. Ferrie, C., & Kaiser, S. (2019). Neural Networks for Babies. Sourcebooks. ISBN   978-1492671206.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. Zell, Andreas (1994). Simulation Neuronaler Netze[Simulation of Neural Networks] (in German) (1st ed.). Addison-Wesley. p. 73. ISBN   3-89319-554-8.
  3. Schmidhuber, Jürgen (2015-01-01). "Deep learning in neural networks: An overview". Neural Networks. 61: 85–117. arXiv: 1404.7828 . doi:10.1016/j.neunet.2014.09.003. ISSN   0893-6080. PMID   25462637. S2CID   11715509.
  4. Linnainmaa, Seppo (1970). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors (Masters) (in Finnish). University of Helsinki. p. 6–7.
  5. Kelley, Henry J. (1960). "Gradient theory of optimal flight paths". ARS Journal. 30 (10): 947–954. doi:10.2514/8.5282.
  6. Rosenblatt, Frank. x. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington DC, 1961
  7. 1 2 Werbos, Paul (1982). "Applications of advances in nonlinear sensitivity analysis" (PDF). System modeling and optimization. Springer. pp. 762–770. Archived (PDF) from the original on 14 April 2016. Retrieved 2 July 2017.
  8. 1 2 Rumelhart, David E., Geoffrey E. Hinton, and R. J. Williams. "Learning Internal Representations by Error Propagation". David E. Rumelhart, James L. McClelland, and the PDP research group. (editors), Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1: Foundation. MIT Press, 1986.
  9. Achler, T. (2023). "What AI, Neuroscience, and Cognitive Science Can Learn from Each Other: An Embedded Perspective". Cognitive Computation.
  10. Haykin, Simon (1998). Neural Networks: A Comprehensive Foundation (2 ed.). Prentice Hall. ISBN   0-13-273350-1.
  11. Merriman, Mansfield. A List of Writings Relating to the Method of Least Squares: With Historical and Critical Notes. Vol. 4. Academy, 1877.
  12. Stigler, Stephen M. (1981). "Gauss and the Invention of Least Squares". Ann. Stat. 9 (3): 465–474. doi: 10.1214/aos/1176345451 .
  13. 1 2 3 4 5 Schmidhuber, Jürgen (2022). "Annotated History of Modern AI and Deep Learning". arXiv: 2212.11279 [cs.NE].
  14. Bretscher, Otto (1995). Linear Algebra With Applications (3rd ed.). Upper Saddle River, NJ: Prentice Hall.
  15. Stigler, Stephen M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900 . Cambridge: Harvard. ISBN   0-674-40340-1.
  16. McCulloch, Warren S.; Pitts, Walter (1943-12-01). "A logical calculus of the ideas immanent in nervous activity". The Bulletin of Mathematical Biophysics. 5 (4): 115–133. doi:10.1007/BF02478259. ISSN   1522-9602.
  17. Rosenblatt, Frank (1958). "The Perceptron: A Probabilistic Model For Information Storage And Organization in the Brain". Psychological Review. 65 (6): 386–408. CiteSeerX   10.1.1.588.3775 . doi:10.1037/h0042519. PMID   13602029. S2CID   12781225.
  18. 1 2 Joseph, R. D. (1960). Contributions to Perceptron Theory, Cornell Aeronautical Laboratory Report No. VG-11 96--G-7, Buffalo.
  19. Rosenblatt, Frank (1962). Principles of Neurodynamics. Spartan, New York.
  20. Ivakhnenko, A. G. (1973). Cybernetic Predicting Devices. CCM Information Corporation.
  21. Ivakhnenko, A. G.; Grigorʹevich Lapa, Valentin (1967). Cybernetics and forecasting techniques. American Elsevier Pub. Co.
  22. Amari, Shun'ichi (1967). "A theory of adaptive pattern classifier". IEEE Transactions. EC (16): 279-307.
  23. Linnainmaa, Seppo (1970). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors (Masters) (in Finnish). University of Helsinki. p. 6–7.
  24. Linnainmaa, Seppo (1976). "Taylor expansion of the accumulated rounding error". BIT Numerical Mathematics. 16 (2): 146–160. doi:10.1007/bf01931367. S2CID   122357351.
  25. Ostrovski, G.M., Volin,Y.M., and Boris, W.W. (1971). On the computation of derivatives. Wiss. Z. Tech. Hochschule for Chemistry, 13:382–384.
  26. 1 2 Schmidhuber, Juergen (25 Oct 2014). "Who Invented Backpropagation?". IDSIA, Switzerland. Archived from the original on 30 July 2024. Retrieved 14 Sep 2024.
  27. Anderson, James A.; Rosenfeld, Edward, eds. (2000). Talking Nets: An Oral History of Neural Networks. The MIT Press. doi:10.7551/mitpress/6626.003.0016. ISBN   978-0-262-26715-1.
  28. Werbos, Paul J. (1994). The Roots of Backpropagation : From Ordered Derivatives to Neural Networks and Political Forecasting. New York: John Wiley & Sons. ISBN   0-471-59897-6.
  29. Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (October 1986). "Learning representations by back-propagating errors". Nature. 323 (6088): 533–536. Bibcode:1986Natur.323..533R. doi:10.1038/323533a0. ISSN   1476-4687.
  30. Bengio, Yoshua; Ducharme, Réjean; Vincent, Pascal; Janvin, Christian (March 2003). "A neural probabilistic language model". The Journal of Machine Learning Research. 3: 1137–1155.
  31. Auer, Peter; Harald Burgsteiner; Wolfgang Maass (2008). "A learning rule for very simple universal approximators consisting of a single layer of perceptrons" (PDF). Neural Networks. 21 (5): 786–795. doi:10.1016/j.neunet.2007.12.036. PMID   18249524. Archived from the original (PDF) on 2011-07-06. Retrieved 2009-09-08.
  32. Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function Mathematics of Control, Signals, and Systems , 2(4), 303–314.