Vision transformer

Last updated

A vision transformer (ViT) is a transformer designed for computer vision. [1] A ViT breaks down an input image into a series of patches (rather than breaking up text into tokens), serialises each patch into a vector, and maps it to a smaller dimension with a single matrix multiplication. These vector embeddings are then processed by a transformer encoder as if they were token embeddings.

Contents

ViT has found applications in image recognition, image segmentation, and autonomous driving.[ citation needed ]

History

Transformers were introduced in 2017, in a paper "Attention Is All You Need", [2] and have found widespread use in natural language processing. In 2020, they were adapted for computer vision, yielding ViT. [1]

In 2021 a pure transformer model demonstrated better performance and greater efficiency than CNNs on image classification. [3]

A study in June 2021 added a transformer backend to ResNet, which dramatically reduced costs and increased accuracy. [4] [5] [6]

In the same year, some important variants of the Vision Transformers were proposed. These variants are mainly intended to be more efficient, more accurate or better suited to a specific domain. Among the most relevant is the Swin Transformer, [7] which through some modifications to the attention mechanism and a multi-stage approach achieved state-of-the-art results on some object detection datasets such as COCO. Another interesting variant is the TimeSformer, designed for video understanding tasks and able to capture spatial and temporal information through the use of divided space-time attention. [8]

Overview

The basic architecture, used by the original 2020 paper, [1] is as follows. In summary, it is a BERT-like encoder-only Transformer.

The input image is of type , where are height, width, channel (RGB). It is then split into square-shaped patches of type .

For each patch, the patch is pushed through a linear operator, to obtain a vector ("patch embedding"). The position of the patch is also transformed into a vector by "position encoding". The two vectors are added, then pushed through several Transformer encoders.

The attention mechanism in a ViT repeatedly transforms representation vectors of image patches, incorporating more and more semantic relations between image patches in an image. This is analogous to how in natural language processing, as representation vectors flow through a transformer, they incorporate more and more semantic relations between words, from syntax to semantics.

The above architecture turns an image into a sequence of vector representations. To use these for downstream applications, an additional head needs to be trained to interpret them.

For example, to use it for classification, one can add a shallow MLP on top of it that outputs a probability distribution over classes. The original paper uses a linear-GeLU-linear-softmax network. [1]

Variants

Original ViT

Vision Transformer Architecture for Image Classification Vision Transformer.gif
Vision Transformer Architecture for Image Classification

Transformers found their initial applications in natural language processing tasks, as demonstrated by language models such as BERT and GPT-3. By contrast the typical image processing system uses a convolutional neural network (CNN). Well-known projects include Xception, ResNet, EfficientNet, [9] DenseNet, [10] and Inception. [3]

Transformers measure the relationships between pairs of input tokens (words in the case of text strings), termed attention. The cost is quadratic in the number of tokens. For images, the basic unit of analysis is the pixel. However, computing relationships for every pixel pair in a typical image is prohibitive in terms of memory and computation. Instead, ViT computes relationships among pixels in various small sections of the image (e.g., 16x16 pixels), at a drastically reduced cost. The sections (with positional embeddings) are placed in a sequence. The embeddings are learnable vectors. Each section is arranged into a linear sequence and multiplied by the embedding matrix. The result, with the position embedding is fed to the transformer. [3]

As in the case of BERT, a fundamental role in classification tasks is played by the class token. A special token that is used as the only input of the final MLP Head as it has been influenced by all the others.

The architecture for image classification is the most common and uses only the Transformer Encoder in order to transform the various input tokens. However, there are also other applications in which the decoder part of the traditional Transformer Architecture is also used.

Masked Autoencoder

In Masked Autoencoder, there are two ViTs put end-to-end. The first one takes in image patches with positional encoding, and outputs vectors representing each patch. The second one takes in vectors with positional encoding and outputs image patches again. During training, both ViTs are used. An image is cut into patches, and only 25% of the patches are put into the first ViT. The second ViT takes the encoded vectors and outputs a reconstruction of the full image. During use, only the first ViT is used. [11]

Swin Transformer

The Swin Transformer ("Shifted windows") [7] takes inspiration from standard convolutional neural networks:

It is improved by Swin Transformer V2, [12] which modifies upon the ViT by a different attention mechanism (Figure 1):

ViT-VQGAN

In ViT-VQGAN, [13] there are two ViT encoders and a discriminator. One encodes 8x8 patches of an image into a list of vectors, one for each patch. The vectors can only come from a discrete set of "codebook", as in vector quantization. Another encodes the quantized vectors back to image patches. The training objective attempts to make the reconstruction image (the output image) faithful to the input image. The discriminator (usually a convolutional network, but other networks are allowed) attempts to decide if an image is an original real image, or a reconstructed image by the ViT.

The idea is essentially the same as vector quantized variational autoencoder (VQVAE) plus generative adversarial network (GAN).

After such a ViT-VQGAN is trained, it can be used to code an arbitrary image into a list of symbols, and code an arbitrary list of symbols into an image. The list of symbols can be used to train into a standard autoregressive transformer (like GPT), for autoregressively generating an image. Further, one can take a list of caption-image pairs, convert the images into strings of symbols, and train a standard GPT-style transformer. Then at test time, one can just give an image caption, and have it autoregressively generate the image. This is the structure of Google Parti. [14]

Comparison with Convolutional Neural Networks

Due to the commonly used (comparatively) large patch size, ViT performance depends more heavily on decisions including that of the optimizer, dataset-specific hyperparameters, and network depth than convolutional networks. Preprocessing with a layer of smaller-size, overlapping (stride < size) convolutional filters helps with performance and stability. [6]

The CNN translates from the basic pixel level to a feature map. A tokenizer translates the feature map into a series of tokens that are then fed into the transformer, which applies the attention mechanism to produce a series of output tokens. Finally, a projector reconnects the output tokens to the feature map. The latter allows the analysis to exploit potentially significant pixel-level details. This drastically reduces the number of tokens that need to be analyzed, reducing costs accordingly. [4]

The differences between CNNs and Vision Transformers are many and lie mainly in their architectural differences.

In fact, CNNs achieve excellent results even with training based on data volumes that are not as large as those required by Vision Transformers.

This different behaviour seems to derive from the different inductive biases they possess. The filter-oriented architecture of CNNs can be somehow exploited by these networks to grasp more quickly the particularities of the analysed images even if, on the other hand, they end up limiting them making it more complex to grasp global relations. [15]

On the other hand, the Vision Transformers possess a different kind of bias toward exploring topological relationships between patches, which leads them to be able to capture also global and wider range relations but at the cost of a more onerous training in terms of data.

Vision Transformers also proved to be much more robust to input image distortions such as adversarial patches or permutations. [16]

However, choosing one architecture over another is not always the wisest choice, and excellent results have been obtained in several Computer Vision tasks through hybrid architectures combining convolutional layers with Vision Transformers. [17] [18] [19]

The Role of Self-Supervised Learning

The considerable need for data during the training phase has made it essential to find alternative methods to train these models, and a central role is now played by self-supervised methods. Using these approaches, it is possible to train a neural network in an almost autonomous way, allowing it to deduce the peculiarities of a specific problem without having to build a large dataset or provide it with accurately assigned labels. Being able to train a Vision Transformer without having to have a huge vision dataset at its disposal could be the key to the widespread dissemination of this promising new architecture.

Applications

Vision Transformers have been used in many Computer Vision tasks with excellent results and in some cases even state-of-the-art.

Among the most relevant areas of application are:

Vision Transformer-based algorithms such as DINO (self-distillation with no labels) [20] also show promising properties on biological datasets such as images generated with the Cell Painting assay. DINO has been demonstrated to learn image representations which could be used to cluster images and explore morphological profiles in a feature space. [21]

See also

Related Research Articles

<span class="mw-page-title-main">Object detection</span> Computer technology related to computer vision and image processing

Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class in digital images and videos. Well-researched domains of object detection include face detection and pedestrian detection. Object detection has applications in many areas of computer vision, including image retrieval and video surveillance.

<span class="mw-page-title-main">Deep learning</span> Branch of machine learning

Deep learning is the subset of machine learning methods based on neural networks with representation learning. The adjective "deep" refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.

<span class="mw-page-title-main">Feature learning</span> Set of learning techniques in machine learning

In machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.

Convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns feature engineering by itself via filters optimization. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by using regularized weights over fewer connections. For example, for each neuron in the fully-connected layer, 10,000 weights would be required for processing an image sized 100 × 100 pixels. However, applying cascaded convolution kernels, only 25 neurons are required to process 5x5-sized tiles. Higher-layer features are extracted from wider context windows, compared to lower-layer features.

Multimodal learning, in the context of machine learning, is a type of deep learning using multiple modalities of data, such as text, audio, or images.

Neural machine translation (NMT) is an approach to machine translation that uses an artificial neural network to predict the likelihood of a sequence of words, typically modeling entire sentences in a single integrated model.

<span class="mw-page-title-main">Residual neural network</span> Deep learning method

A residual neural network is a seminal deep learning model in which the weight layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition and won that year's ImageNet Large Scale Visual Recognition Challenge.

A capsule neural network (CapsNet) is a machine learning system that is a type of artificial neural network (ANN) that can be used to better model hierarchical relationships. The approach is an attempt to more closely mimic biological neural organization.

Neural architecture search (NAS) is a technique for automating the design of artificial neural networks (ANN), a widely used model in the field of machine learning. NAS has been used to design networks that are on par or outperform hand-designed architectures. Methods for NAS can be categorized according to the search space, search strategy and performance estimation strategy used:

U-Net is a convolutional neural network that was developed for biomedical image segmentation at the Computer Science Department of the University of Freiburg. The network is based on a fully convolutional neural network whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation. Segmentation of a 512 × 512 image takes less than a second on a modern (2015) GPU using the U-Net architecture.

<span class="mw-page-title-main">Neural style transfer</span> Type of software algorithm for image manipulation

Neural style transfer (NST) refers to a class of software algorithms that manipulate digital images, or videos, in order to adopt the appearance or visual style of another image. NST algorithms are characterized by their use of deep neural networks for the sake of image transformation. Common uses for NST are the creation of artificial artwork from photographs, for example by transferring the appearance of famous paintings to user-supplied photographs. Several notable mobile apps use NST techniques for this purpose, including DeepArt and Prisma. This method has been used by artists and designers around the globe to develop new artwork based on existent style(s).

<span class="mw-page-title-main">Transformer (deep learning architecture)</span> Machine learning algorithm used for natural-language processing

A transformer is a deep learning architecture developed by Google and based on the multi-head attention mechanism, proposed in a 2017 paper "Attention Is All You Need". Text is converted to numerical representations called tokens, and each token is converted into a vector via looking up from a word embedding table. At each layer, each token is then contextualized within the scope of the context window with other (unmasked) tokens via a parallel multi-head attention mechanism allowing the signal for key tokens to be amplified and less important tokens to be diminished. The transformer paper, published in 2017, is based on the softmax-based attention mechanism proposed by Bahdanau et. al. in 2014 for machine translation, and the Fast Weight Controller, similar to a transformer, proposed in 1992.

Bidirectional Encoder Representations from Transformers (BERT) is a language model based on the transformer architecture, notable for its dramatic improvement over previous state of the art models. It was introduced in October 2018 by researchers at Google. A 2020 literature survey concluded that "in a little over a year, BERT has become a ubiquitous baseline in Natural Language Processing (NLP) experiments counting over 150 research publications analyzing and improving the model."

The machine learning-based attention method simulates how human attention works by assigning varying levels of importance to different words in a sentence. It assigns importance to each word by calculating "soft" weights for the word's numerical representation, known as its embedding, within a specific section of the sentence called the context window to determine its importance. The calculation of these weights can occur simultaneously in models called transformers, or one by one in models known as recurrent neural networks. Unlike "hard" weights, which are predetermined and fixed during training, "soft" weights can adapt and change with each use of the model.

<span class="mw-page-title-main">Video super-resolution</span> Generating high-resolution video frames from given low-resolution ones

Video super-resolution (VSR) is the process of generating high-resolution video frames from the given low-resolution video frames. Unlike single-image super-resolution (SISR), the main goal is not only to restore more fine details while saving coarse ones, but also to preserve motion consistency.

Perceiver is a transformer adapted to be able to process non-textual data, such as images, sounds and video, and spatial data. Transformers underlie other notable systems such as BERT and GPT-3, which preceded Perceiver. It adopts an asymmetric attention mechanism to distill inputs into a latent bottleneck, allowing it to learn from large amounts of heterogeneous data. Perceiver matches or outperforms specialized models on classification tasks.

<span class="mw-page-title-main">Stable Diffusion</span> Image-generating machine learning model

Stable Diffusion is a deep learning, text-to-image model released in 2022 based on diffusion techniques. The generative artificial intelligence technology is the premier product of Stability AI and is considered to be a part of the ongoing artificial intelligence boom.

<span class="mw-page-title-main">Text-to-image model</span> Machine learning model

A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.

A large language model (LLM) is a computational model notable for its ability to achieve general-purpose language generation and other natural language processing tasks such as classification. Based on language models, LLMs acquire these abilities by learning statistical relationships from vast amounts of text during a computationally intensive self-supervised and semi-supervised training process. LLMs can be used for text generation, a form of generative AI, by taking an input text and repeatedly predicting the next token or word.

Text-to-Image personalization is a task in deep learning for computer graphics that augments pre-trained text-to-image generative models. In this task, a generative model that was trained on large-scale data, is adapted such that it can generate images of novel, user-provided concepts. These concepts are typically unseen during training, and may represent specific objects or more abstract categories.

References

  1. 1 2 3 4 Dosovitskiy, Alexey; Beyer, Lucas; Kolesnikov, Alexander; Weissenborn, Dirk; Zhai, Xiaohua; Unterthiner, Thomas; Dehghani, Mostafa; Minderer, Matthias; Heigold, Georg; Gelly, Sylvain; Uszkoreit, Jakob (2021-06-03). "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale". arXiv: 2010.11929 [cs.CV].
  2. Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N; Kaiser, Łukasz; Polosukhin, Illia (2017). "Attention is All you Need" (PDF). Advances in Neural Information Processing Systems. 30. Curran Associates, Inc.
  3. 1 2 3 Sarkar, Arjun (2021-05-20). "Are Transformers better than CNN's at Image Recognition?". Medium. Retrieved 2021-07-11.
  4. 1 2 "Facebook and UC Berkeley Boost CV Performance and Lower Compute Cost With Visual Transformers". Medium. 2020-06-12. Retrieved 2021-07-11.
  5. Wu, Bichen; Xu, Chenfeng; Dai, Xiaoliang; Wan, Alvin; Zhang, Peizhao; Yan, Zhicheng; Masayoshi, Tomizuka; Gonzalez, Joseph; Keutzer, Kurt; Vajda, Peter (2020). "Visual Transformers: Token-based Image Representation and Processing for Computer Vision". arXiv: 2006.03677 [cs.CV].
  6. 1 2 Xiao, Tete; Singh, Mannat; Mintun, Eric; Darrell, Trevor; Dollár, Piotr; Girshick, Ross (2021-06-28). "Early Convolutions Help Transformers See Better". arXiv: 2106.14881 [cs.CV].
  7. 1 2 Liu, Ze; Lin, Yutong; Cao, Yue; Hu, Han; Wei, Yixuan; Zhang, Zheng; Lin, Stephen; Guo, Baining (2021-03-25). "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows". arXiv: 2103.14030 [cs.CV].
  8. Bertasius, Gedas; Wang, Heng; Torresani, Lorenzo (2021-02-09). "Is Space-Time Attention All You Need for Video Understanding?". arXiv: 2102.05095 [cs.CV].
  9. Tan, Mingxing; Le, Quoc (23 June 2021). "EfficientNetV2: Smaller Models and Faster Training" (PDF). Proceedings of the 38th International Conference on Machine Learning (PMLR). 139: 10096–10106. arXiv: 2104.00298 . Retrieved 31 October 2023.
  10. Huang, Gao; Liu, Zhuang; van der Maaten, Laurens; Q. Weinberger, Kilian (28 Jan 2018). "Densely Connected Convolutional Networks". arXiv: 1608.06993 [cs.CV].
  11. He, Kaiming; Chen, Xinlei; Xie, Saining; Li, Yanghao; Dollár, Piotr; Girshick, Ross (2021). "Masked Autoencoders Are Scalable Vision Learners". arXiv: 2111.06377 [cs.CV].
  12. Liu, Ze; Hu, Han; Lin, Yutong; Yao, Zhuliang; Xie, Zhenda; Wei, Yixuan; Ning, Jia; Cao, Yue; Zhang, Zheng; Dong, Li; Wei, Furu; Guo, Baining (2022). "Swin Transformer V2: Scaling Up Capacity and Resolution". Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12009–12019.
  13. Yu, Jiahui; Li, Xin; Koh, Jing Yu; Zhang, Han; Pang, Ruoming; Qin, James; Ku, Alexander; Xu, Yuanzhong; Baldridge, Jason; Wu, Yonghui (2021). "Vector-quantized Image Modeling with Improved VQGAN". arXiv: 2110.04627 [cs.CV].
  14. "Parti: Pathways Autoregressive Text-to-Image Model". sites.research.google. Retrieved 2023-11-03.
  15. Raghu, Maithra; Unterthiner, Thomas; Kornblith, Simon; Zhang, Chiyuan; Dosovitskiy, Alexey (2021-08-19). "Do Vision Transformers See Like Convolutional Neural Networks?". arXiv: 2108.08810 [cs.CV].
  16. Naseer, Muzammal; Ranasinghe, Kanchana; Khan, Salman; Hayat, Munawar; Khan, Fahad Shahbaz; Yang, Ming-Hsuan (2021-05-21). "Intriguing Properties of Vision Transformers". arXiv: 2105.10497 [cs.CV].
  17. Dai, Zihang; Liu, Hanxiao; Le, Quoc V.; Tan, Mingxing (2021-06-09). "CoAtNet: Marrying Convolution and Attention for All Data Sizes". arXiv: 2106.04803 [cs.CV].
  18. Wu, Haiping; Xiao, Bin; Codella, Noel; Liu, Mengchen; Dai, Xiyang; Yuan, Lu; Zhang, Lei (2021-03-29). "CvT: Introducing Convolutions to Vision Transformers". arXiv: 2103.15808 [cs.CV].
  19. Coccomini, Davide; Messina, Nicola; Gennaro, Claudio; Falchi, Fabrizio (2022). "Combining Efficient Net and Vision Transformers for Video Deepfake Detection". Image Analysis and Processing – ICIAP 2022. Lecture Notes in Computer Science. Vol. 13233. pp. 219–229. arXiv: 2107.02612 . doi:10.1007/978-3-031-06433-3_19. ISBN   978-3-031-06432-6. S2CID   235742764.
  20. Caron, Mathilde; Touvron, Hugo; Misra, Ishan; Jegou, Herve; Mairal, Julien; Bojanowski, Piotr; Joulin, Armand (October 2021). "Emerging Properties in Self-Supervised Vision Transformers". 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE. pp. 9630–9640. arXiv: 2104.14294 . doi:10.1109/iccv48922.2021.00951. ISBN   978-1-6654-2812-5.
  21. Doron, Michael; Moutakanni, Théo; Chen, Zitong S.; Moshkov, Nikita; Caron, Mathilde; Touvron, Hugo; Bojanowski, Piotr; Pernice, Wolfgang M.; Caicedo, Juan C. (2023-06-18). "Unbiased single-cell morphology with self-supervised vision transformers". BioRxiv: The Preprint Server for Biology: 2023.06.16.545359. doi:10.1101/2023.06.16.545359. PMC   10312751 . PMID   37398158 . Retrieved 2024-02-12.