T5 (language model)

Last updated
Text-to-Text Transfer Transformer (T5)
Original author(s) Google AI
Initial release23 October 2019;5 years ago (23 October 2019)
Stable release
Repository https://github.com/google-research/text-to-text-transfer-transformer
Type
License Apache-2.0
Website blog.research.google/2020/02/exploring-transfer-learning-with-t5.html

T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.

Contents

T5 models are usually pretrained on a massive dataset of text and code, after which they can perform the text-based tasks that are similar to their pretrained tasks. They can also be finetuned to perform other tasks.

T5 models have been employed in various applications, including chatbots, machine translation systems, text summarization tools, code generation, and robotics. [4]

Training

The original T5 models are pre-trained on the Colossal Clean Crawled Corpus (C4), containing text and code scraped from the internet. This pre-training process enables the models to learn general language understanding and generation abilities. T5 models can then be fine-tuned on specific downstream tasks, adapting their knowledge to perform well in various applications.

The T5 models were pretrained on many tasks, all in the format of <input text> -> <output text>.

How a T5 can be finetuned for a summarization task. T5-finetune-summarization.svg
How a T5 can be finetuned for a summarization task.

Some examples are:

Architecture

T5 encoder-decoder structure, showing the attention structure. In the encoder self-attention (lower square), all input tokens attend to each other; In the encoder-decoder cross-attention (upper rectangle), each target token attends to all input tokens; In the decoder self-attention (upper triangle), each target token attends to present and past target tokens only (causal). T5 encoder-decoder structure.svg
T5 encoder-decoder structure, showing the attention structure. In the encoder self-attention (lower square), all input tokens attend to each other; In the encoder–decoder cross-attention (upper rectangle), each target token attends to all input tokens; In the decoder self-attention (upper triangle), each target token attends to present and past target tokens only (causal).

The T5 series encompasses several models with varying sizes and capabilities, all encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.

These models are often distinguished by their parameter count, which indicates the complexity and potential capacity of the model. The original paper [1] reported the following 5 models:

T5 properties [note 1]
NameTotal parametersEncoder parametersDecoder parameters
Small76,956,16035,330,81641,625,34465122048648
Base247,577,856109,628,544137,949,3121276830726412
Large770,567,168334,939,648435,627,52024102440966416
3B2,884,497,4081,240,909,8241,643,587,5842410241638412832
11B11,340,220,4164,864,791,5526,475,428,86424102465536128128

*The encoder and the decoder have the same shape. So for example, the T5-small has 6 layers in the encoder and 6 layers in the decoder.

In the above table,

Note that unlike typical Transformers, the 3B and 11B models do not satisfy . [6]

Compared to the original Transformer, it uses a few minor modifications: layer normalization with no additive bias; placing the layer normalization outside the residual path; relative positional embedding. [7]

For all experiments, they used a WordPiece tokenizer, with vocabulary size 32,000. The tokenizer is shared across both the input and output of each model. It was trained on a mixture of English, German, French, and Romanian data from the C4 dataset, at a ratio of 10:1:1:1.

Variants

Several subsequent models used the T5 architecture, with non-standardized naming conventions used to differentiate them. This section attempts to collect the main ones. An exhaustive list of the variants released by Google Brain is on the GitHub repo for T5X. [8]

Some models are trained from scratch while others are trained by starting with a previous trained model. By default, each model is trained from scratch, except otherwise noted.

T5 v1.1 properties [note 2]
NameTotal parametersEncoder parametersDecoder parameters
Small76,961,15235,332,80041,628,35285121024646
Base247,577,856109,628,544137,949,3121276820486412
Large783,150,080341,231,104441,918,97624102428166416
XL2,849,757,1841,223,527,4241,626,229,76024204851206432
XXL11,135,332,3524,762,310,6566,373,021,696244096102406464

Applications

The T5 model itself is an encoder-decoder model, allowing it to be used for instruction following. The encoder encodes the instruction, and the decoder autoregressively generates the reply.

The T5 encoder can be used as a text encoder, much like BERT. It encodes a text into a sequence of real-number vectors, which can be used for downstream applications. For example, Google Imagen [26] uses T5-XXL as text encoder, and the encoded text vectors are used as conditioning on a diffusion model. As another example, the AuraFlow diffusion model [27] uses Pile-T5-XL.

References

  1. 1 2 3 Raffel, Colin; Shazeer, Noam; Roberts, Adam; Lee, Katherine; Narang, Sharan; Matena, Michael; Zhou, Yanqi; Li, Wei; Liu, Peter J. (2020). "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer". Journal of Machine Learning Research. 21 (140): 1–67. arXiv: 1910.10683 . ISSN   1533-7928.
  2. 1 2 google-research/text-to-text-transfer-transformer, Google Research, 2024-08-21, retrieved 2024-08-21
  3. Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N; Kaiser, Łukasz; Polosukhin, Illia (2017). "Attention is All you Need". Advances in Neural Information Processing Systems. 30. Curran Associates, Inc.
  4. Jiang, Yunfan; Gupta, Agrim; Zhang, Zichen; Wang, Guanzhi; Dou, Yongqiang; Chen, Yanjun; Fei-Fei, Li; Anandkumar, Anima; Zhu, Yuke (2022-10-06). "VIMA: General Robot Manipulation with Multimodal Prompts". arXiv: 2210.03094 [cs.RO].
  5. 1 2 Zhang, Aston; Lipton, Zachary; Li, Mu; Smola, Alexander J. (2024). "11.9. Large-Scale Pretraining with Transformers". Dive into deep learning. Cambridge New York Port Melbourne New Delhi Singapore: Cambridge University Press. ISBN   978-1-009-38943-3.
  6. "config.json · google-t5/t5-11b at main". huggingface.co. 2020-04-24. Retrieved 2024-09-17.
  7. Shaw, Peter; Uszkoreit, Jakob; Vaswani, Ashish (2018-04-12), Self-Attention with Relative Position Representations, arXiv: 1803.02155
  8. 1 2 "t5x/docs/models.md at main · google-research/t5x". GitHub. Retrieved 2024-08-05.
  9. Shazeer, Noam (2020-02-12), GLU Variants Improve Transformer, arXiv: 2002.05202
  10. "config.json · google/t5-v1_1-xl at main". huggingface.co. 2020-11-19. Retrieved 2024-09-17.
  11. "config.json · google/t5-v1_1-xxl at main". huggingface.co. 2020-11-19. Retrieved 2024-09-17.
  12. Lester, Brian; Al-Rfou, Rami; Constant, Noah (2021-09-02), The Power of Scale for Parameter-Efficient Prompt Tuning, arXiv: 2104.08691
  13. Fedus, William; Zoph, Barret; Shazeer, Noam (2022-06-16), Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, arXiv: 2101.03961
  14. "SwitchTransformers". huggingface.co. Retrieved 2024-08-05.
  15. Sanh, Victor; Webson, Albert; Raffel, Colin; Bach, Stephen H.; Sutawika, Lintang; Alyafeai, Zaid; Chaffin, Antoine; Stiegler, Arnaud; Scao, Teven Le (2022-03-17), Multitask Prompted Training Enables Zero-Shot Task Generalization, arXiv: 2110.08207
  16. "bigscience/T0 · Hugging Face". huggingface.co. 2024-03-04. Retrieved 2024-08-21.
  17. Xue, Linting; Barua, Aditya; Constant, Noah; Al-Rfou, Rami; Narang, Sharan; Kale, Mihir; Roberts, Adam; Raffel, Colin (2022-03-25). "ByT5: Towards a Token-Free Future with Pre-trained Byte-to-Byte Models". Transactions of the Association for Computational Linguistics. 10: 291–306. arXiv: 2105.13626 . doi:10.1162/tacl_a_00461. ISSN   2307-387X.
  18. Chung, Hyung Won; Hou, Le; Longpre, Shayne; Zoph, Barret; Tay, Yi; Fedus, William; Li, Yunxuan; Wang, Xuezhi; Dehghani, Mostafa; Brahma, Siddhartha; Webson, Albert; Gu, Shixiang Shane; Dai, Zhuyun; Suzgun, Mirac; Chen, Xinyun (2024). "Scaling Instruction-Finetuned Language Models". Journal of Machine Learning Research. 25 (70): 1–53. arXiv: 2210.11416 . ISSN   1533-7928.
  19. Longpre, Shayne; Hou, Le; Vu, Tu; Webson, Albert; Chung, Hyung Won; Tay, Yi; Zhou, Denny; Le, Quoc V.; Zoph, Barret; Wei, Jason; Roberts, Adam (2023-07-03). "The Flan Collection: Designing Data and Methods for Effective Instruction Tuning". Proceedings of the 40th International Conference on Machine Learning. PMLR: 22631–22648. arXiv: 2301.13688 .
  20. 1 2 google-research/FLAN, Google Research, 2024-08-03, retrieved 2024-08-05
  21. "google/flan-t5-xl · Hugging Face". huggingface.co. 2024-01-04. Retrieved 2024-08-05.
  22. Roberts, Adam; Chung, Hyung Won; Mishra, Gaurav; Levskaya, Anselm; Bradbury, James; Andor, Daniel; Narang, Sharan; Lester, Brian; Gaffney, Colin; Mohiuddin, Afroz; Hawthorne, Curtis; Lewkowycz, Aitor; Salcianu, Alex; Zee, Marc van; Austin, Jacob (2023). "Scaling Up Models and Data with t5x and seqio". Journal of Machine Learning Research. 24 (377): 1–8. ISSN   1533-7928.
  23. 1 2 Tay, Yi; Dehghani, Mostafa; Tran, Vinh Q.; Garcia, Xavier; Wei, Jason; Wang, Xuezhi; Chung, Hyung Won; Shakeri, Siamak; Bahri, Dara (2023-02-28), UL2: Unifying Language Learning Paradigms, arXiv: 2205.05131
  24. "Training great LLMs entirely from ground up in the wilderness as a startup". Yi Tay. Retrieved 2024-10-18.
  25. Sutawika, Lintang; Komatsuzaki, Aran; Raffel, Colin (2024-04-15). "Pile-T5". EleutherAI Blog. Retrieved 2024-05-05.
  26. "Imagen: Text-to-Image Diffusion Models". imagen.research.google. Retrieved 2024-08-23.
  27. "AuraFlow". huggingface.co. Retrieved 2024-08-23.

Notes

  1. importtorchfromtransformersimportAutoConfig,AutoModelForSeq2SeqLMdefcount_parameters(model):enc=sum(p.numel()forpinmodel.encoder.parameters())dec=sum(p.numel()forpinmodel.decoder.parameters())total=enc+decreturntotal,enc,decfornamein["t5-small","t5-base","t5-large","t5-3b","t5-11b"]:print(f"Model: {name}")config=AutoConfig.from_pretrained(f"google-t5/{name}")torch_dtype=torch.float16model=AutoModelForSeq2SeqLM.from_config(config,torch_dtype=torch_dtype)total,enc,dec=count_parameters(model)print(f"Total number of parameters in {name}: {total}")print(f"Total number of parameters in encoder: {enc}")print(f"Total number of parameters in decoder: {dec}")delmodel
  2. importtorchfromtransformersimportAutoConfig,AutoModelForSeq2SeqLMdefcount_parameters(model):enc=sum(p.numel()forpinmodel.encoder.parameters())dec=sum(p.numel()forpinmodel.decoder.parameters())total=enc+decreturntotal,enc,decfornamein["small","base","large","xl","xxl"]:print(f"Model: {name}")config=AutoConfig.from_pretrained(f"google/t5-v1_1-{name}")torch_dtype=torch.float16model=AutoModelForSeq2SeqLM.from_config(config,torch_dtype=torch_dtype)total,enc,dec=count_parameters(model)print(f"Total number of parameters in {name}: {total}")print(f"Total number of parameters in encoder: {enc}")print(f"Total number of parameters in decoder: {dec}")delmodel