Proper generalized decomposition

Last updated

The proper generalized decomposition (PGD) is an iterative numerical method for solving boundary value problems (BVPs), that is, partial differential equations constrained by a set of boundary conditions, such as the Poisson's equation or the Laplace's equation.

Contents

The PGD algorithm computes an approximation of the solution of the BVP by successive enrichment. This means that, in each iteration, a new component (or mode) is computed and added to the approximation. In principle, the more modes obtained, the closer the approximation is to its theoretical solution. Unlike POD principal components, PGD modes are not necessarily orthogonal to each other.

By selecting only the most relevant PGD modes, a reduced order model of the solution is obtained. Because of this, PGD is considered a dimensionality reduction algorithm.

Description

The proper generalized decomposition is a method characterized by

  1. a variational formulation of the problem,
  2. a discretization of the domain in the style of the finite element method,
  3. the assumption that the solution can be approximated as a separate representation and
  4. a numerical greedy algorithm to find the solution. [1] [2]

Variational formulation

In the Proper Generalized Decomposition method, the variational formulation involves translating the problem into a format where the solution can be approximated by minimizing (or sometimes maximizing) a functional. A functional is a scalar quantity that depends on a function, which in this case, represents our problem.

The most commonly implemented variational formulation in PGD is the Bubnov-Galerkin method. [3] [4] This method is chosen for its ability to provide an approximate solution to complex problems, such as those described by partial differential equations (PDEs). In the Bubnov-Galerkin approach, the idea is to project the problem onto a space spanned by a finite number of basis functions. These basis functions are chosen to approximate the solution space of the problem.

In the Bubnov-Galerkin method, we seek an approximate solution that satisfies the integral form of the PDEs over the domain of the problem. This is different from directly solving the differential equations. By doing so, the method transforms the problem into finding the coefficients that best fit this integral equation in the chosen function space.

While the Bubnov-Galerkin method is prevalent, other variational formulations are also used in PGD, [5] [3] depending on the specific requirements and characteristics of the problem, such as:

Domain discretization

The discretization of the domain is a well defined set of procedures that cover (a) the creation of finite element meshes, (b) the definition of basis function on reference elements (also called shape functions) and (c) the mapping of reference elements onto the elements of the mesh.

Separate representation

PGD assumes that the solution u of a (multidimensional) problem can be approximated as a separate representation of the form

where the number of addends N and the functional products X1(x1), X2(x2), ..., Xd(xd), each depending on a variable (or variables), are unknown beforehand.

Greedy algorithm

The solution is sought by applying a greedy algorithm, usually the fixed point algorithm, to the weak formulation of the problem. For each iteration i of the algorithm, a mode of the solution is computed. Each mode consists of a set of numerical values of the functional products X1(x1), ..., Xd(xd), which enrich the approximation of the solution. Due to the greedy nature of the algorithm, the term 'enrich' is used rather than 'improve', since some modes may actually worsen the approach. The number of computed modes required to obtain an approximation of the solution below a certain error threshold depends on the stopping criterion of the iterative algorithm.

Features

PGD is suitable for solving high-dimensional problems, since it overcomes the limitations of classical approaches. In particular, PGD avoids the curse of dimensionality, as solving decoupled problems is computationally much less expensive than solving multidimensional problems.

Therefore, PGD enables to re-adapt parametric problems into a multidimensional framework by setting the parameters of the problem as extra coordinates:

where a series of functional products K1(k1), K2(k2), ..., Kp(kp), each depending on a parameter (or parameters), has been incorporated to the equation.

In this case, the obtained approximation of the solution is called computational vademecum : a general meta-model containing all the particular solutions for every possible value of the involved parameters. [7]

Sparse Subspace Learning

The Sparse Subspace Learning (SSL) method leverages the use of hierarchical collocation to approximate the numerical solution of parametric models. With respect to traditional projection-based reduced order modeling, the use of a collocation enables non-intrusive approach based on sparse adaptive sampling of the parametric space. This allows to recover the lowdimensional structure of the parametric solution subspace while also learning the functional dependency from the parameters in explicit form. A sparse low-rank approximate tensor representation of the parametric solution can be built through an incremental strategy that only needs to have access to the output of a deterministic solver. Non-intrusiveness makes this approach straightforwardly applicable to challenging problems characterized by nonlinearity or non affine weak forms. [8]

Related Research Articles

In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the n-th approximation is derived from the previous ones.

<span class="mw-page-title-main">Numerical methods for ordinary differential equations</span> Methods used to find numerical solutions of ordinary differential equations

Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals.

<span class="mw-page-title-main">Optimal control</span> Mathematical way of attaining a desired output from a dynamic system

Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the Moon with minimum fuel expenditure. Or the dynamical system could be a nation's economy, with the objective to minimize unemployment; the controls in this case could be fiscal and monetary policy. A dynamical system may also be introduced to embed operations research problems within the framework of optimal control theory.

In the study of differential equations, the Ritz method is a direct method to find an approximate solution for boundary value problems. The method is named after Walther Ritz. Some alternative formulations include the Rayleigh–Ritz method and the Ritz-Galerkin method.

In mathematics a radial basis function (RBF) is a real-valued function whose value depends only on the distance between the input and some fixed point, either the origin, so that , or some other fixed point , called a center, so that . Any function that satisfies the property is a radial function. The distance is usually Euclidean distance, although other metrics are sometimes used. They are often used as a collection which forms a basis for some function space of interest, hence the name.

In mathematics, in the area of numerical analysis, Galerkin methods are named after the Soviet mathematician Boris Galerkin. They convert a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions.

<span class="mw-page-title-main">Computational electromagnetics</span> Branch of physics

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment using computers.

In numerical analysis, Stone's method, also known as the strongly implicit procedure or SIP, is an algorithm for solving a sparse linear system of equations. The method uses an incomplete LU decomposition, which approximates the exact LU decomposition, to get an iterative solution of the problem. The method is named after Harold S. Stone, who proposed it in 1968.

<span class="mw-page-title-main">Meshfree methods</span> Methods in numerical analysis not requiring knowledge of neighboring points

In the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort. The absence of a mesh allows Lagrangian simulations, in which the nodes can move according to the velocity field.

Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear equations,

In the numerical solution of partial differential equations, a topic in mathematics, the spectral element method (SEM) is a formulation of the finite element method (FEM) that uses high degree piecewise polynomials as basis functions. The spectral element method was introduced in a 1984 paper by A. T. Patera. Although Patera is credited with development of the method, his work was a rediscovery of an existing method

<span class="mw-page-title-main">Finite element method</span> Numerical method for solving physical or engineering problems

The finite element method (FEM) is an extremely popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

In numerical analysis, coarse problem is an auxiliary system of equations used in an iterative method for the solution of a given larger system of equations. A coarse problem is basically a version of the same problem at a lower resolution, retaining its essential characteristics, but with fewer variables. The purpose of the coarse problem is to propagate information throughout the whole problem globally.

The Petrov–Galerkin method is a mathematical method used to approximate solutions of partial differential equations which contain terms with odd order and where the test function and solution function belong to different function spaces. It can be viewed as an extension of Bubnov-Galerkin method where the bases of test functions and solution functions are the same. In an operator formulation of the differential equation, Petrov–Galerkin method can be viewed as applying a projection that is not necessarily orthogonal, in contrast to Bubnov-Galerkin method.

In scientific computation and simulation, the method of fundamental solutions (MFS) is a technique for solving partial differential equations based on using the fundamental solution as a basis function. The MFS was developed to overcome the major drawbacks in the boundary element method (BEM) which also uses the fundamental solution to satisfy the governing equation. Consequently, both the MFS and the BEM are of a boundary discretization numerical technique and reduce the computational complexity by one dimensionality and have particular edge over the domain-type numerical techniques such as the finite element and finite volume methods on the solution of infinite domain, thin-walled structures, and inverse problems.

The Kansa method is a computer method used to solve partial differential equations. Its main advantage is it is very easy to understand and program on a computer. It is much less complicated than the finite element method. Another advantage is it works well on multi variable problems. The finite element method is complicated when working with more than 3 space variables and time.

Fluid motion is governed by the Navier–Stokes equations, a set of coupled and nonlinear partial differential equations derived from the basic laws of conservation of mass, momentum and energy. The unknowns are usually the flow velocity, the pressure and density and temperature. The analytical solution of this equation is impossible hence scientists resort to laboratory experiments in such situations. The answers delivered are, however, usually qualitatively different since dynamical and geometric similitude are difficult to enforce simultaneously between the lab experiment and the prototype. Furthermore, the design and construction of these experiments can be difficult, particularly for stratified rotating flows. Computational fluid dynamics (CFD) is an additional tool in the arsenal of scientists. In its early days CFD was often controversial, as it involved additional approximation to the governing equations and raised additional (legitimate) issues. Nowadays CFD is an established discipline alongside theoretical and experimental methods. This position is in large part due to the exponential growth of computer power which has allowed us to tackle ever larger and more complex problems.

The generalized-strain mesh-free (GSMF) formulation is a local meshfree method in the field of numerical analysis, completely integration free, working as a weighted-residual weak-form collocation. This method was first presented by Oliveira and Portela (2016), in order to further improve the computational efficiency of meshfree methods in numerical analysis. Local meshfree methods are derived through a weighted-residual formulation which leads to a local weak form that is the well known work theorem of the theory of structures. In an arbitrary local region, the work theorem establishes an energy relationship between a statically-admissible stress field and an independent kinematically-admissible strain field. Based on the independence of these two fields, this formulation results in a local form of the work theorem that is reduced to regular boundary terms only, integration-free and free of volumetric locking.

<span class="mw-page-title-main">Method of moments (electromagnetics)</span> Numerical method in computational electromagnetics

The method of moments (MoM), also known as the moment method and method of weighted residuals, is a numerical method in computational electromagnetics. It is used in computer programs that simulate the interaction of electromagnetic fields such as radio waves with matter, for example antenna simulation programs like NEC that calculate the radiation pattern of an antenna. Generally being a frequency-domain method, it involves the projection of an integral equation into a system of linear equations by the application of appropriate boundary conditions. This is done by using discrete meshes as in finite difference and finite element methods, often for the surface. The solutions are represented with the linear combination of pre-defined basis functions; generally, the coefficients of these basis functions are the sought unknowns. Green's functions and Galerkin method play a central role in the method of moments.

References

  1. Amine Ammar; Béchir Mokdad; Francisco Chinesta; Roland Keunings (2006). "A New Family of Solvers for Some Classes of Multidimensional Partial Differential Equations Encountered in Kinetic Theory Modeling of Complex Fluids". Journal of Non-Newtonian Fluid Mechanics.
  2. Amine Ammar; Béchir Mokdad; Francisco Chinesta; Roland Keunings (2007). "A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: Transient simulation using space-time separated representations". Journal of Non-Newtonian Fluid Mechanics.
  3. 1 2 Croft, Thomas Lloyd David (2015-04-09). Proper generalised decompositions: theory and applications (phd thesis). Cardiff University.
  4. Chinesta, Francisco; Keunings, Roland; Leygue, Adrien (2014). The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer. SpringerBriefs in Applied Sciences and Technology. Springer International Publishing. ISBN   978-3-319-02864-4.
  5. Aguado, José Vicente (18 Nov 2018). "Advanced strategies for the separated formulation of problems in the Proper Generalized Decomposition framework".
  6. Perelló i Ribas, Rafel (2020-06-22). Petrov-Galerkin Proper Generalized Decomposition strategies for convection-diffusion problems (Master thesis thesis). Universitat Politècnica de Catalunya.
  7. Francisco Chinesta, Adrien Leygue, Felipe Bordeu, Elías Cueto, David Gonzalez, Amine Ammar, Antonio Huerta (2013). "PGD-Based Computational Vademecum for Efficient Design, Optimization and Control". Archives of Computational Methods in Engineering.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Borzacchiello, Domenico; Aguado, José V.; Chinesta, Francisco (April 2019). "Non-intrusive Sparse Subspace Learning for Parametrized Problems". Archives of Computational Methods in Engineering. 26 (2): 303–326. doi:10.1007/s11831-017-9241-4. hdl: 10985/18435 . ISSN   1134-3060. S2CID   126121268.