Rule-based machine learning

Last updated

Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. [1] [2] [3] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system.

Contents

Rule-based machine learning approaches include learning classifier systems, [4] association rule learning, [5] artificial immune systems, [6] and any other method that relies on a set of rules, each covering contextual knowledge.

While rule-based machine learning is conceptually a type of rule-based system, it is distinct from traditional rule-based systems, which are often hand-crafted, and other rule-based decision makers. This is because rule-based machine learning applies some form of learning algorithm to automatically identify useful rules, rather than a human needing to apply prior domain knowledge to manually construct rules and curate a rule set.

Rules

Rules typically take the form of an '{IF:THEN} expression', (e.g. {IF 'condition' THEN 'result'}, or as a more specific example, {IF 'red' AND 'octagon' THEN 'stop-sign}). An individual rule is not in itself a model, since the rule is only applicable when its condition is satisfied. Therefore rule-based machine learning methods typically comprise a set of rules, or knowledge base, that collectively make up the prediction model.

See also

Related Research Articles

<span class="mw-page-title-main">Data mining</span> Process of extracting and discovering patterns in large data sets

Data mining is the process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is an interdisciplinary subfield of computer science and statistics with an overall goal of extracting information from a data set and transforming the information into a comprehensible structure for further use. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. Aside from the raw analysis step, it also involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating.

<span class="mw-page-title-main">Machine learning</span> Study of algorithms that improve automatically through experience

Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can effectively generalize and thus perform tasks without explicit instructions. Recently, generative artificial neural networks have been able to surpass many previous approaches in performance. Machine learning approaches have been applied to large language models, computer vision, speech recognition, email filtering, agriculture, and medicine, where it is too costly to develop algorithms to perform the needed tasks.

<span class="mw-page-title-main">Learning classifier system</span> Paradigm of rule-based machine learning methods

Learning classifier systems, or LCS, are a paradigm of rule-based machine learning methods that combine a discovery component with a learning component. Learning classifier systems seek to identify a set of context-dependent rules that collectively store and apply knowledge in a piecewise manner in order to make predictions. This approach allows complex solution spaces to be broken up into smaller, simpler parts.

<span class="mw-page-title-main">Training, validation, and test data sets</span> Tasks in machine learning

In machine learning, a common task is the study and construction of algorithms that can learn from and make predictions on data. Such algorithms function by making data-driven predictions or decisions, through building a mathematical model from input data. These input data used to build the model are usually divided into multiple data sets. In particular, three data sets are commonly used in different stages of the creation of the model: training, validation, and test sets.

The expression computational intelligence (CI) usually refers to the ability of a computer to learn a specific task from data or experimental observation. Even though it is commonly considered a synonym of soft computing, there is still no commonly accepted definition of computational intelligence.

In artificial intelligence, artificial immune systems (AIS) are a class of computationally intelligent, rule-based machine learning systems inspired by the principles and processes of the vertebrate immune system. The algorithms are typically modeled after the immune system's characteristics of learning and memory for use in problem-solving.

In predictive analytics, data science, machine learning and related fields, concept drift or drift is an evolution of data that invalidates the data model. It happens when the statistical properties of the target variable, which the model is trying to predict, change over time in unforeseen ways. This causes problems because the predictions become less accurate as time passes. Drift detection and drift adaptation are of paramount importance in the fields that involve dynamically changing data and data models.

Vasant G. Honavar is an Indian-American computer scientist, and artificial intelligence, machine learning, big data, data science, causal inference, knowledge representation, bioinformatics and health informatics researcher and professor.

<span class="mw-page-title-main">Meta-learning (computer science)</span> Subfield of machine learning

Meta learning is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing learning algorithms or to learn (induce) the learning algorithm itself, hence the alternative term learning to learn.

In machine learning, multi-label classification or multi-output classification is a variant of the classification problem where multiple nonexclusive labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of several classes. In the multi-label problem the labels are nonexclusive and there is no constraint on how many of the classes the instance can be assigned to.

A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics to efficiently solve computational search problems. One of the motivations for studying hyper-heuristics is to build systems which can handle classes of problems rather than solving just one problem.

<span class="mw-page-title-main">Ensemble learning</span> Statistics and machine learning technique

In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.

<span class="mw-page-title-main">Probabilistic classification</span> Machine learning problem

In machine learning, a probabilistic classifier is a classifier that is able to predict, given an observation of an input, a probability distribution over a set of classes, rather than only outputting the most likely class that the observation should belong to. Probabilistic classifiers provide classification that can be useful in its own right or when combining classifiers into ensembles.

Bing Liu is a Chinese-American professor of computer science who specializes in data mining, machine learning, and natural language processing. In 2002, he became a scholar at University of Illinois at Chicago. He holds a PhD from the University of Edinburgh (1988). His PhD advisors were Austin Tate and Kenneth Williamson Currie, and his PhD thesis was titled Reinforcement Planning for Resource Allocation and Constraint Satisfaction.

<span class="mw-page-title-main">Glossary of artificial intelligence</span> List of definitions of terms and concepts commonly used in the study of artificial intelligence

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

<span class="mw-page-title-main">Artificial intelligence in healthcare</span> Overview of the use of artificial intelligence in healthcare

Artificial intelligence in healthcare is a term used to describe the use of machine-learning algorithms and software, or artificial intelligence (AI), to copy human cognition in the analysis, presentation, and understanding of complex medical and health care data, or to exceed human capabilities by providing new ways to diagnose, treat, or prevent disease. Specifically, AI is the ability of computer algorithms to approximate conclusions based solely on input data.

<span class="mw-page-title-main">Outline of machine learning</span> Overview of and topical guide to machine learning

The following outline is provided as an overview of and topical guide to machine learning:

<span class="mw-page-title-main">Machine learning in bioinformatics</span>

Machine learning in bioinformatics is the application of machine learning algorithms to bioinformatics, including genomics, proteomics, microarrays, systems biology, evolution, and text mining.

<span class="mw-page-title-main">Explainable artificial intelligence</span> AI in which the results of the solution can be understood by humans

Explainable AI (XAI), often overlapping with Interpretable AI, or Explainable Machine Learning (XML), either refers to an AI system over which it is possible for humans to retain intellectual oversight, or to the methods to achieve this. The main focus is usually on the reasoning behind the decisions or predictions made by the AI which are made more understandable and transparent. XAI counters the "black box" tendency of machine learning, where even the AI's designers cannot explain why it arrived at a specific decision.

In network theory, collective classification is the simultaneous prediction of the labels for multiple objects, where each label is predicted using information about the object's observed features, the observed features and labels of its neighbors, and the unobserved labels of its neighbors. Collective classification problems are defined in terms of networks of random variables, where the network structure determines the relationship between the random variables. Inference is performed on multiple random variables simultaneously, typically by propagating information between nodes in the network to perform approximate inference. Approaches that use collective classification can make use of relational information when performing inference. Examples of collective classification include predicting attributes of individuals in a social network, classifying webpages in the World Wide Web, and inferring the research area of a paper in a scientific publication dataset.

References

  1. Bassel, George W.; Glaab, Enrico; Marquez, Julietta; Holdsworth, Michael J.; Bacardit, Jaume (2011-09-01). "Functional Network Construction in Arabidopsis Using Rule-Based Machine Learning on Large-Scale Data Sets". The Plant Cell. 23 (9): 3101–3116. doi:10.1105/tpc.111.088153. ISSN   1532-298X. PMC   3203449 . PMID   21896882.
  2. M., Weiss, S.; N., Indurkhya (1995-01-01). "Rule-based Machine Learning Methods for Functional Prediction". Journal of Artificial Intelligence Research. 3 (1995): 383–403. arXiv: cs/9512107 . Bibcode:1995cs.......12107W. doi:10.1613/jair.199. S2CID   1588466.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. "GECCO 2016 | Tutorials". GECCO 2016. Retrieved 2016-10-14.
  4. Urbanowicz, Ryan J.; Moore, Jason H. (2009-09-22). "Learning Classifier Systems: A Complete Introduction, Review, and Roadmap". Journal of Artificial Evolution and Applications. 2009: 1–25. doi: 10.1155/2009/736398 . ISSN   1687-6229.
  5. Zhang, C. and Zhang, S., 2002. Association rule mining: models and algorithms . Springer-Verlag.
  6. De Castro, Leandro Nunes, and Jonathan Timmis. Artificial immune systems: a new computational intelligence approach . Springer Science & Business Media, 2002.