Multinomial logistic regression

Last updated

In statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. [1] That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.).

Contents

Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model. [4]

Background

Multinomial logistic regression is used when the dependent variable in question is nominal (equivalently categorical, meaning that it falls into any one of a set of categories that cannot be ordered in any meaningful way) and for which there are more than two categories. Some examples would be:

These are all statistical classification problems. They all have in common a dependent variable to be predicted that comes from one of a limited set of items that cannot be meaningfully ordered, as well as a set of independent variables (also known as features, explanators, etc.), which are used to predict the dependent variable. Multinomial logistic regression is a particular solution to classification problems that use a linear combination of the observed features and some problem-specific parameters to estimate the probability of each particular value of the dependent variable. The best values of the parameters for a given problem are usually determined from some training data (e.g. some people for whom both the diagnostic test results and blood types are known, or some examples of known words being spoken).

Assumptions

The multinomial logistic model assumes that data are case-specific; that is, each independent variable has a single value for each case. As with other types of regression, there is no need for the independent variables to be statistically independent from each other (unlike, for example, in a naive Bayes classifier); however, collinearity is assumed to be relatively low, as it becomes difficult to differentiate between the impact of several variables if this is not the case. [5]

If the multinomial logit is used to model choices, it relies on the assumption of independence of irrelevant alternatives (IIA), which is not always desirable. This assumption states that the odds of preferring one class over another do not depend on the presence or absence of other "irrelevant" alternatives. For example, the relative probabilities of taking a car or bus to work do not change if a bicycle is added as an additional possibility. This allows the choice of K alternatives to be modeled as a set of K-1 independent binary choices, in which one alternative is chosen as a "pivot" and the other K-1 compared against it, one at a time. The IIA hypothesis is a core hypothesis in rational choice theory; however numerous studies in psychology show that individuals often violate this assumption when making choices. An example of a problem case arises if choices include a car and a blue bus. Suppose the odds ratio between the two is 1 : 1. Now if the option of a red bus is introduced, a person may be indifferent between a red and a blue bus, and hence may exhibit a car : blue bus : red bus odds ratio of 1 : 0.5 : 0.5, thus maintaining a 1 : 1 ratio of car : any bus while adopting a changed car : blue bus ratio of 1 : 0.5. Here the red bus option was not in fact irrelevant, because a red bus was a perfect substitute for a blue bus.

If the multinomial logit is used to model choices, it may in some situations impose too much constraint on the relative preferences between the different alternatives. It is especially important to take into account if the analysis aims to predict how choices would change if one alternative were to disappear (for instance if one political candidate withdraws from a three candidate race). Other models like the nested logit or the multinomial probit may be used in such cases as they allow for violation of the IIA. [6]

Model

Introduction

There are multiple equivalent ways to describe the mathematical model underlying multinomial logistic regression. This can make it difficult to compare different treatments of the subject in different texts. The article on logistic regression presents a number of equivalent formulations of simple logistic regression, and many of these have analogues in the multinomial logit model.

The idea behind all of them, as in many other statistical classification techniques, is to construct a linear predictor function that constructs a score from a set of weights that are linearly combined with the explanatory variables (features) of a given observation using a dot product:

where Xi is the vector of explanatory variables describing observation i, βk is a vector of weights (or regression coefficients) corresponding to outcome k, and score(Xi, k) is the score associated with assigning observation i to category k. In discrete choice theory, where observations represent people and outcomes represent choices, the score is considered the utility associated with person i choosing outcome k. The predicted outcome is the one with the highest score.

The difference between the multinomial logit model and numerous other methods, models, algorithms, etc. with the same basic setup (the perceptron algorithm, support vector machines, linear discriminant analysis, etc.) is the procedure for determining (training) the optimal weights/coefficients and the way that the score is interpreted. In particular, in the multinomial logit model, the score can directly be converted to a probability value, indicating the probability of observation i choosing outcome k given the measured characteristics of the observation. This provides a principled way of incorporating the prediction of a particular multinomial logit model into a larger procedure that may involve multiple such predictions, each with a possibility of error. Without such means of combining predictions, errors tend to multiply. For example, imagine a large predictive model that is broken down into a series of submodels where the prediction of a given submodel is used as the input of another submodel, and that prediction is in turn used as the input into a third submodel, etc. If each submodel has 90% accuracy in its predictions, and there are five submodels in series, then the overall model has only 0.95 = 59% accuracy. If each submodel has 80% accuracy, then overall accuracy drops to 0.85 = 33% accuracy. This issue is known as error propagation and is a serious problem in real-world predictive models, which are usually composed of numerous parts. Predicting probabilities of each possible outcome, rather than simply making a single optimal prediction, is one means of alleviating this issue.[ citation needed ]

Setup

The basic setup is the same as in logistic regression, the only difference being that the dependent variables are categorical rather than binary, i.e. there are K possible outcomes rather than just two. The following description is somewhat shortened; for more details, consult the logistic regression article.

Data points

Specifically, it is assumed that we have a series of N observed data points. Each data point i (ranging from 1 to N) consists of a set of M explanatory variables x1,i ... xM,i (also known as independent variables, predictor variables, features, etc.), and an associated categorical outcome Yi (also known as dependent variable, response variable), which can take on one of K possible values. These possible values represent logically separate categories (e.g. different political parties, blood types, etc.), and are often described mathematically by arbitrarily assigning each a number from 1 to K. The explanatory variables and outcome represent observed properties of the data points, and are often thought of as originating in the observations of N "experiments" — although an "experiment" may consist in nothing more than gathering data. The goal of multinomial logistic regression is to construct a model that explains the relationship between the explanatory variables and the outcome, so that the outcome of a new "experiment" can be correctly predicted for a new data point for which the explanatory variables, but not the outcome, are available. In the process, the model attempts to explain the relative effect of differing explanatory variables on the outcome.

Some examples:

  • The observed outcomes are different variants of a disease such as hepatitis (possibly including "no disease" and/or other related diseases) in a set of patients, and the explanatory variables might be characteristics of the patients thought to be pertinent (sex, race, age, blood pressure, outcomes of various liver-function tests, etc.). The goal is then to predict which disease is causing the observed liver-related symptoms in a new patient.
  • The observed outcomes are the party chosen by a set of people in an election, and the explanatory variables are the demographic characteristics of each person (e.g. sex, race, age, income, etc.). The goal is then to predict the likely vote of a new voter with given characteristics.

Linear predictor

As in other forms of linear regression, multinomial logistic regression uses a linear predictor function to predict the probability that observation i has outcome k, of the following form:

where is a regression coefficient associated with the mth explanatory variable and the kth outcome. As explained in the logistic regression article, the regression coefficients and explanatory variables are normally grouped into vectors of size M+1, so that the predictor function can be written more compactly:

where is the set of regression coefficients associated with outcome k, and (a row vector) is the set of explanatory variables associated with observation i.

As a set of independent binary regressions

To arrive at the multinomial logit model, one can imagine, for K possible outcomes, running K-1 independent binary logistic regression models, in which one outcome is chosen as a "pivot" and then the other K-1 outcomes are separately regressed against the pivot outcome. If outcome K (the last outcome) is chosen as the pivot, the K-1 regression equations are:

.

This formulation is also known as the Additive Log Ratio transform commonly used in compositional data analysis. In other applications it’s referred to as “relative risk”. [7]

If we exponentiate both sides and solve for the probabilities, we get:

Using the fact that all K of the probabilities must sum to one, we find:

.

We can use this to find the other probabilities:

.

The fact that we run multiple regressions reveals why the model relies on the assumption of independence of irrelevant alternatives described above.

Estimating the coefficients

The unknown parameters in each vector βk are typically jointly estimated by maximum a posteriori (MAP) estimation, which is an extension of maximum likelihood using regularization of the weights to prevent pathological solutions (usually a squared regularizing function, which is equivalent to placing a zero-mean Gaussian prior distribution on the weights, but other distributions are also possible). The solution is typically found using an iterative procedure such as generalized iterative scaling, [8] iteratively reweighted least squares (IRLS), [9] by means of gradient-based optimization algorithms such as L-BFGS, [4] or by specialized coordinate descent algorithms. [10]

As a log-linear model

The formulation of binary logistic regression as a log-linear model can be directly extended to multi-way regression. That is, we model the logarithm of the probability of seeing a given output using the linear predictor as well as an additional normalization factor, the logarithm of the partition function:

.

As in the binary case, we need an extra term to ensure that the whole set of probabilities forms a probability distribution, i.e. so that they all sum to one:

The reason why we need to add a term to ensure normalization, rather than multiply as is usual, is because we have taken the logarithm of the probabilities. Exponentiating both sides turns the additive term into a multiplicative factor, so that the probability is just the Gibbs measure:

.

The quantity Z is called the partition function for the distribution. We can compute the value of the partition function by applying the above constraint that requires all probabilities to sum to 1:

Therefore:

Note that this factor is "constant" in the sense that it is not a function of Yi, which is the variable over which the probability distribution is defined. However, it is definitely not constant with respect to the explanatory variables, or crucially, with respect to the unknown regression coefficients βk, which we will need to determine through some sort of optimization procedure.

The resulting equations for the probabilities are

.

Or generally:

The following function:

is referred to as the softmax function. The reason is that the effect of exponentiating the values is to exaggerate the differences between them. As a result, will return a value close to 0 whenever is significantly less than the maximum of all the values, and will return a value close to 1 when applied to the maximum value, unless it is extremely close to the next-largest value. Thus, the softmax function can be used to construct a weighted average that behaves as a smooth function (which can be conveniently differentiated, etc.) and which approximates the indicator function

Thus, we can write the probability equations as

The softmax function thus serves as the equivalent of the logistic function in binary logistic regression.

Note that not all of the vectors of coefficients are uniquely identifiable. This is due to the fact that all probabilities must sum to 1, making one of them completely determined once all the rest are known. As a result, there are only separately specifiable probabilities, and hence separately identifiable vectors of coefficients. One way to see this is to note that if we add a constant vector to all of the coefficient vectors, the equations are identical:

As a result, it is conventional to set (or alternatively, one of the other coefficient vectors). Essentially, we set the constant so that one of the vectors becomes 0, and all of the other vectors get transformed into the difference between those vectors and the vector we chose. This is equivalent to "pivoting" around one of the K choices, and examining how much better or worse all of the other K-1 choices are, relative to the choice we are pivoting around. Mathematically, we transform the coefficients as follows:

This leads to the following equations:

Other than the prime symbols on the regression coefficients, this is exactly the same as the form of the model described above, in terms of K-1 independent two-way regressions.

As a latent-variable model

It is also possible to formulate multinomial logistic regression as a latent variable model, following the two-way latent variable model described for binary logistic regression. This formulation is common in the theory of discrete choice models, and makes it easier to compare multinomial logistic regression to the related multinomial probit model, as well as to extend it to more complex models.

Imagine that, for each data point i and possible outcome k=1,2,...,K, there is a continuous latent variable Yi,k* (i.e. an unobserved random variable) that is distributed as follows:

where i.e. a standard type-1 extreme value distribution.

This latent variable can be thought of as the utility associated with data point i choosing outcome k, where there is some randomness in the actual amount of utility obtained, which accounts for other unmodeled factors that go into the choice. The value of the actual variable is then determined in a non-random fashion from these latent variables (i.e. the randomness has been moved from the observed outcomes into the latent variables), where outcome k is chosen if and only if the associated utility (the value of ) is greater than the utilities of all the other choices, i.e. if the utility associated with outcome k is the maximum of all the utilities. Since the latent variables are continuous, the probability of two having exactly the same value is 0, so we ignore the scenario. That is:

Or equivalently:

Let's look more closely at the first equation, which we can write as follows:

There are a few things to realize here:

  1. In general, if and then That is, the difference of two independent identically distributed extreme-value-distributed variables follows the logistic distribution, where the first parameter is unimportant. This is understandable since the first parameter is a location parameter, i.e. it shifts the mean by a fixed amount, and if two values are both shifted by the same amount, their difference remains the same. This means that all of the relational statements underlying the probability of a given choice involve the logistic distribution, which makes the initial choice of the extreme-value distribution, which seemed rather arbitrary, somewhat more understandable.
  2. The second parameter in an extreme-value or logistic distribution is a scale parameter, such that if then This means that the effect of using an error variable with an arbitrary scale parameter in place of scale 1 can be compensated simply by multiplying all regression vectors by the same scale. Together with the previous point, this shows that the use of a standard extreme-value distribution (location 0, scale 1) for the error variables entails no loss of generality over using an arbitrary extreme-value distribution. In fact, the model is nonidentifiable (no single set of optimal coefficients) if the more general distribution is used.
  3. Because only differences of vectors of regression coefficients are used, adding an arbitrary constant to all coefficient vectors has no effect on the model. This means that, just as in the log-linear model, only K-1 of the coefficient vectors are identifiable, and the last one can be set to an arbitrary value (e.g. 0).

Actually finding the values of the above probabilities is somewhat difficult, and is a problem of computing a particular order statistic (the first, i.e. maximum) of a set of values. However, it can be shown that the resulting expressions are the same as in above formulations, i.e. the two are equivalent.

Estimation of intercept

When using multinomial logistic regression, one category of the dependent variable is chosen as the reference category. Separate odds ratios are determined for all independent variables for each category of the dependent variable with the exception of the reference category, which is omitted from the analysis. The exponential beta coefficient represents the change in the odds of the dependent variable being in a particular category vis-a-vis the reference category, associated with a one unit change of the corresponding independent variable.


Likelihood function

The observed values for of the explained variables are considered as realizations of stochastically independent, categorically distributed random variables .

The likelihood function for this model is defined by:

where the index denotes the observations 1 to n and the index denotes the classes 1 to K. is the Kronecker delta.

The negative log-likelihood function is therefore the well-known cross-entropy: :

Application in natural language processing

In natural language processing, multinomial LR classifiers are commonly used as an alternative to naive Bayes classifiers because they do not assume statistical independence of the random variables (commonly known as features) that serve as predictors. However, learning in such a model is slower than for a naive Bayes classifier, and thus may not be appropriate given a very large number of classes to learn. In particular, learning in a Naive Bayes classifier is a simple matter of counting up the number of co-occurrences of features and classes, while in a maximum entropy classifier the weights, which are typically maximized using maximum a posteriori (MAP) estimation, must be learned using an iterative procedure; see #Estimating the coefficients.

See also

Related Research Articles

<span class="mw-page-title-main">Least squares</span> Approximation method in statistics

The method of least squares is a parameter estimation method in regression analysis based on minimizing the sum of the squares of the residuals made in the results of each individual equation.

In statistics, the Gauss–Markov theorem states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. The errors do not need to be normal for the theorem to apply, nor do they need to be independent and identically distributed.

<span class="mw-page-title-main">Logistic regression</span> Statistical model for a binary dependent variable

In statistics, the logistic model is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis, logistic regression is estimating the parameters of a logistic model. Formally, in binary logistic regression there is a single binary dependent variable, coded by an indicator variable, where the two values are labeled "0" and "1", while the independent variables can each be a binary variable or a continuous variable. The corresponding probability of the value labeled "1" can vary between 0 and 1, hence the labeling; the function that converts log-odds to probability is the logistic function, hence the name. The unit of measurement for the log-odds scale is called a logit, from logistic unit, hence the alternative names. See § Background and § Definition for formal mathematics, and § Example for a worked example.

In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

In statistics, a linear probability model (LPM) is a special case of a binary regression model. Here the dependent variable for each observation takes values which are either 0 or 1. The probability of observing a 0 or 1 in any one case is treated as depending on one or more explanatory variables. For the "linear probability model", this relationship is a particularly simple one, and allows the model to be fitted by linear regression.

In statistics, a probit model is a type of regression where the dependent variable can take only two values, for example married or not married. The word is a portmanteau, coming from probability + unit. The purpose of the model is to estimate the probability that an observation with particular characteristics will fall into a specific one of the categories; moreover, classifying observations based on their predicted probabilities is a type of binary classification model.

In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the input dataset and the output of the (linear) function of the independent variable.

In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables.

In statistics, binomial regression is a regression analysis technique in which the response has a binomial distribution: it is the number of successes in a series of independent Bernoulli trials, where each trial has probability of success . In binomial regression, the probability of a success is related to explanatory variables: the corresponding concept in ordinary regression is to relate the mean value of the unobserved response to explanatory variables.

The softmax function, also known as softargmax or normalized exponential function, converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and used in multinomial logistic regression. The softmax function is often used as the last activation function of a neural network to normalize the output of a network to a probability distribution over predicted output classes, based on Luce's choice axiom.

Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients and ultimately allowing the out-of-sample prediction of the regressandconditional on observed values of the regressors. The simplest and most widely used version of this model is the normal linear model, in which given is distributed Gaussian. In this model, and under a particular choice of prior probabilities for the parameters—so-called conjugate priors—the posterior can be found analytically. With more arbitrarily chosen priors, the posteriors generally have to be approximated.

In statistics, Bayesian multivariate linear regression is a Bayesian approach to multivariate linear regression, i.e. linear regression where the predicted outcome is a vector of correlated random variables rather than a single scalar random variable. A more general treatment of this approach can be found in the article MMSE estimator.

In probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution. It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n. The Dirichlet parameter vector captures the prior belief about the situation and can be seen as a pseudocount: observations of each outcome that occur before the actual data is collected. The compounding corresponds to a Pólya urn scheme. It is frequently encountered in Bayesian statistics, machine learning, empirical Bayes methods and classical statistics as an overdispersed multinomial distribution.

In statistics and econometrics, the multinomial probit model is a generalization of the probit model used when there are several possible categories that the dependent variable can fall into. As such, it is an alternative to the multinomial logit model as one method of multiclass classification. It is not to be confused with the multivariate probit model, which is used to model correlated binary outcomes for more than one independent variable.

Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations. There are many similarities to linear least squares, but also some significant differences. In economic theory, the non-linear least squares method is applied in (i) the probit regression, (ii) threshold regression, (iii) smooth regression, (iv) logistic link regression, (v) Box–Cox transformed regressors ().

In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model.

In statistics and in machine learning, a linear predictor function is a linear function of a set of coefficients and explanatory variables, whose value is used to predict the outcome of a dependent variable. This sort of function usually comes in linear regression, where the coefficients are called regression coefficients. However, they also occur in various types of linear classifiers, as well as in various other models, such as principal component analysis and factor analysis. In many of these models, the coefficients are referred to as "weights".

In statistics, linear regression is a statistical model which estimates the linear relationship between a scalar response and one or more explanatory variables. The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable. If the explanatory variables are measured with error then errors-in-variables models are required, also known as measurement error models.

In statistics, the class of vector generalized linear models (VGLMs) was proposed to enlarge the scope of models catered for by generalized linear models (GLMs). In particular, VGLMs allow for response variables outside the classical exponential family and for more than one parameter. Each parameter can be transformed by a link function. The VGLM framework is also large enough to naturally accommodate multiple responses; these are several independent responses each coming from a particular statistical distribution with possibly different parameter values.

<span class="mw-page-title-main">Hyperbolastic functions</span> Mathematical functions

The hyperbolastic functions, also known as hyperbolastic growth models, are mathematical functions that are used in medical statistical modeling. These models were originally developed to capture the growth dynamics of multicellular tumor spheres, and were introduced in 2005 by Mohammad Tabatabai, David Williams, and Zoran Bursac. The precision of hyperbolastic functions in modeling real world problems is somewhat due to their flexibility in their point of inflection. These functions can be used in a wide variety of modeling problems such as tumor growth, stem cell proliferation, pharma kinetics, cancer growth, sigmoid activation function in neural networks, and epidemiological disease progression or regression.

References

  1. Greene, William H. (2012). Econometric Analysis (Seventh ed.). Boston: Pearson Education. pp. 803–806. ISBN   978-0-273-75356-8.
  2. Engel, J. (1988). "Polytomous logistic regression". Statistica Neerlandica. 42 (4): 233–252. doi:10.1111/j.1467-9574.1988.tb01238.x.
  3. Menard, Scott (2002). Applied Logistic Regression Analysis . SAGE. p.  91. ISBN   9780761922087.
  4. 1 2 Malouf, Robert (2002). A comparison of algorithms for maximum entropy parameter estimation (PDF). Sixth Conf. on Natural Language Learning (CoNLL). pp. 49–55.
  5. Belsley, David (1991). Conditioning diagnostics : collinearity and weak data in regression. New York: Wiley. ISBN   9780471528890.
  6. Baltas, G.; Doyle, P. (2001). "Random Utility Models in Marketing Research: A Survey". Journal of Business Research . 51 (2): 115–125. doi:10.1016/S0148-2963(99)00058-2.
  7. Stata Manual “mlogit — Multinomial (polytomous) logistic regression”
  8. Darroch, J.N. & Ratcliff, D. (1972). "Generalized iterative scaling for log-linear models". The Annals of Mathematical Statistics. 43 (5): 1470–1480. doi: 10.1214/aoms/1177692379 .
  9. Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer. pp. 206–209.
  10. Yu, Hsiang-Fu; Huang, Fang-Lan; Lin, Chih-Jen (2011). "Dual coordinate descent methods for logistic regression and maximum entropy models" (PDF). Machine Learning. 85 (1–2): 41–75. doi: 10.1007/s10994-010-5221-8 .