Decision boundary

Last updated

In a statistical-classification problem with two classes, a decision boundary or decision surface is a hypersurface that partitions the underlying vector space into two sets, one for each class. The classifier will classify all the points on one side of the decision boundary as belonging to one class and all those on the other side as belonging to the other class.

Contents

A decision boundary is the region of a problem space in which the output label of a classifier is ambiguous. [1]

If the decision surface is a hyperplane, then the classification problem is linear, and the classes are linearly separable.

Decision boundaries are not always clear cut. That is, the transition from one class in the feature space to another is not discontinuous, but gradual. This effect is common in fuzzy logic based classification algorithms, where membership in one class or another is ambiguous.

Decision boundaries can be approximations of optimal stopping boundaries. [2] The decision boundary is the set of points of that hyperplane that pass through zero. [3] For example, the angle between a vector and points in a set must be zero for points that are on or close to the decision boundary. [4]

Decision boundary instability can be incorporated with generalization error as a standard for selecting the most accurate and stable classifier. [5]

In neural networks and support vector models

In the case of backpropagation based artificial neural networks or perceptrons, the type of decision boundary that the network can learn is determined by the number of hidden layers the network has. If it has no hidden layers, then it can only learn linear problems. If it has one hidden layer, then it can learn any continuous function on compact subsets of Rn as shown by the universal approximation theorem, thus it can have an arbitrary decision boundary.

In particular, support vector machines find a hyperplane that separates the feature space into two classes with the maximum margin. If the problem is not originally linearly separable, the kernel trick can be used to turn it into a linearly separable one, by increasing the number of dimensions. Thus a general hypersurface in a small dimension space is turned into a hyperplane in a space with much larger dimensions.

Neural networks try to learn the decision boundary which minimizes the empirical error, while support vector machines try to learn the decision boundary which maximizes the empirical margin between the decision boundary and data points.

See also

Related Research Articles

<span class="mw-page-title-main">Supervised learning</span> Paradigm in machine learning

Supervised learning (SL) is a paradigm in machine learning where input objects and a desired output value train a model. The training data is processed, building a function that maps new data to expected output values. An optimal scenario will allow for the algorithm to correctly determine output values for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way. This statistical quality of an algorithm is measured through the so-called generalization error.

In machine learning, support vector machines are supervised max-margin models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories by Vladimir Vapnik with colleagues SVMs are one of the most studied models, being based on statistical learning frameworks of VC theory proposed by Vapnik and Chervonenkis (1974).

In the field of machine learning, the goal of statistical classification is to use an object's characteristics to identify which class it belongs to. A linear classifier achieves this by making a classification decision based on the value of a linear combination of the characteristics. An object's characteristics are also known as feature values and are typically presented to the machine in a vector called a feature vector. Such classifiers work well for practical problems such as document classification, and more generally for problems with many variables (features), reaching accuracy levels comparable to non-linear classifiers while taking less time to train and use. 5–12–23

<span class="mw-page-title-main">Hyperplane</span> Subspace of n-space whose dimension is (n-1)

In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is one less than that of the ambient space. Two lower-dimensional examples of hyperplanes are one-dimensional lines in a plane and zero-dimensional points on a line.

Pattern recognition is the task of assigning a class to an observation based on patterns extracted from data. While similar, pattern recognition (PR) is not to be confused with pattern machines (PM) which may possess (PR) capabilities but their primary function is to distinguish and create emergent patterns. PR has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Pattern recognition has its origins in statistics and engineering; some modern approaches to pattern recognition include the use of machine learning, due to the increased availability of big data and a new abundance of processing power.

In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector.

<span class="mw-page-title-main">Nonlinear dimensionality reduction</span> Projection of data onto lower-dimensional manifolds

Nonlinear dimensionality reduction, also known as manifold learning, is any of various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.

Instantaneously trained neural networks are feedforward artificial neural networks that create a new hidden neuron node for each novel training sample. The weights to this hidden neuron separate out not only this training sample but others that are near it, thus providing generalization. This separation is done using the nearest hyperplane that can be written down instantaneously. In the two most important implementations the neighborhood of generalization either varies with the training sample or remains constant. These networks use unary coding for an effective representation of the data sets.

<span class="mw-page-title-main">Linear separability</span>

In Euclidean geometry, linear separability is a property of two sets of points. This is most easily visualized in two dimensions by thinking of one set of points as being colored blue and the other set of points as being colored red. These two sets are linearly separable if there exists at least one line in the plane with all of the blue points on one side of the line and all the red points on the other side. This idea immediately generalizes to higher-dimensional Euclidean spaces if the line is replaced by a hyperplane.

<span class="mw-page-title-main">Feedforward neural network</span> One of two broad types of artificial neural network

A feedforward neural network (FNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. Its flow is uni-directional, meaning that the information in the model flows in only one direction—forward—from the input nodes, through the hidden nodes and to the output nodes, without any cycles or loops, in contrast to recurrent neural networks, which have a bi-directional flow. Modern feedforward networks are trained using the backpropagation method and are colloquially referred to as the "vanilla" neural networks.

In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. The general task of pattern analysis is to find and study general types of relations in datasets. For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products. The feature map in kernel machines is infinite dimensional but only requires a finite dimensional matrix from user-input according to the Representer theorem. Kernel machines are slow to compute for datasets larger than a couple of thousand examples without parallel processing.

In machine learning, a margin classifier is a classifier which is able to give an associated distance from the decision boundary for each example. For instance, if a linear classifier is used, the distance of an example from the separating hyperplane is the margin of that example.

In the mathematical theory of artificial neural networks, universal approximation theorems are theorems of the following form: Given a family of neural networks, for each function from a certain function space, there exists a sequence of neural networks from the family, such that according to some criterion. That is, the family of neural networks is dense in the function space.

<span class="mw-page-title-main">Time delay neural network</span>

Time delay neural network (TDNN) is a multilayer artificial neural network architecture whose purpose is to 1) classify patterns with shift-invariance, and 2) model context at each layer of the network.

Cover's theorem is a statement in computational learning theory and is one of the primary theoretical motivations for the use of non-linear kernel methods in machine learning applications. It is so termed after the information theorist Thomas M. Cover who stated it in 1965, referring to it as counting function theorem.

In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes. For example, deciding on whether an image is showing a banana, an orange, or an apple is a multiclass classification problem, with three possible classes, while deciding on whether an image contains an apple or not is a binary classification problem.

There are many types of artificial neural networks (ANN).

<span class="mw-page-title-main">Hinge loss</span> Loss function in machine learning

In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs).

The following outline is provided as an overview of and topical guide to machine learning:

References

  1. Corso, Jason J. (Spring 2013). "Quiz 1 of 14 - Solutions" (PDF). Department of Computer Science and Engineering - University at Buffalo School of Engineering and Applied Sciences . Johnson, David.
  2. Whittle, P. (1973). "An Approximate Characterisation of Optimal Stopping Boundaries". Journal of Applied Probability. 10 (1): 158–165. doi:10.2307/3212503. ISSN   0021-9002. JSTOR   3212503 . Retrieved 2022-11-28.
  3. https://cmci.colorado.edu/classes/INFO-4604/files/notes_svm.pdf [ bare URL PDF ]
  4. Laber, Eric B.; Murphy, Susan A. (2011). "Rejoinder". Journal of the American Statistical Association. 106 (495): 940–945. doi:10.1198/jasa.2011.tm11514. ISSN   0162-1459. JSTOR   23427564 . Retrieved 2022-11-28.
  5. Sun, Will Wei; Cheng, Guang; Liu, Yufeng (2018). "Stability Enhanced Large-Margin Classifier Selection". Statistica Sinica. arXiv: 1701.05672 . doi:10.5705/ss.202016.0260. ISSN   1017-0405 . Retrieved 2022-11-28.

Further reading