Object categorization from image search

Last updated

In computer vision, the problem of object categorization from image search is the problem of training a classifier to recognize categories of objects, using only the images retrieved automatically with an Internet search engine. Ideally, automatic image collection would allow classifiers to be trained with nothing but the category names as input. This problem is closely related to that of content-based image retrieval (CBIR), where the goal is to return better image search results rather than training a classifier for image recognition.

Contents

Traditionally, classifiers are trained using sets of images that are labeled by hand. Collecting such a set of images is often a very time-consuming and laborious process. The use of Internet search engines to automate the process of acquiring large sets of labeled images has been described as a potential way of greatly facilitating computer vision research. [1]

Challenges

Unrelated images

One problem with using Internet image search results as a training set for a classifier is the high percentage of unrelated images within the results. It has been estimated that, when a search engine such as Google images is queried with the name of an object category (such as airplane), up to 85% of the returned images are unrelated to the category. [1]

Intra-class variability

Another challenge posed by using Internet image search results as training sets for classifiers is that there is a high amount of variability within object categories, when compared with categories found in hand-labeled datasets such as Caltech 101 and Pascal. Images of objects can vary widely in a number of important factors, such as scale, pose, lighting, number of objects, and amount of occlusion.

pLSA approach

In a 2005 paper by Fergus et al., [1] pLSA (probabilistic latent semantic analysis) and extensions of this model were applied to the problem of object categorization from image search. pLSA was originally developed for document classification, but has since been applied to computer vision. It makes the assumption that images are documents that fit the bag of words model.

Model

Just as text documents are made up of words, each of which may be repeated within the document and across documents, images can be modeled as combinations of visual words. Just as the entire set of text words are defined by a dictionary, the entire set of visual words is defined in a codeword dictionary.

pLSA divides documents into topics as well. Just as knowing the topic(s) of an article allows you to make good guesses about the kinds of words that will appear in it, the distribution of words in an image is dependent on the underlying topics. The pLSA model tells us the probability of seeing each word given the category in terms of topics :

An important assumption made in this model is that and are conditionally independent given . Given a topic, the probability of a certain word appearing as part of that topic is independent of the rest of the image. [2]

Training this model involves finding and that maximizes the likelihood of the observed words in each document. To do this, the expectation maximization algorithm is used, with the following objective function:

Application

ABS-pLSA

Absolute position pLSA (ABS-pLSA) attaches location information to each visual word by localizing it to one of X 揵ins?in the image. Here, represents which of the bins the visual word falls into. The new equation is:

and can be solved for in a manner similar to the original pLSA problem, using the EM algorithm

A problem with this model is that it is not translation or scale invariant. Since the positions of the visual words are absolute, changing the size of the object in the image or moving it would have a significant impact on the spatial distribution of the visual words into different bins.

TSI-pLSA

Translation and scale invariant pLSA (TSI-pLSA). This model extends pLSA by adding another latent variable, which describes the spatial location of the target object in an image. Now, the position of a visual word is given relative to this object location, rather than as an absolute position in the image. The new equation is:

Again, the parameters and can be solved using the EM algorithm. can be assumed to be a uniform distribution.

Implementation

Selecting words

Words in an image were selected using 4 different feature detectors: [1]

Using these 4 detectors, approximately 700 features were detected per image. These features were then encoded as Scale-invariant feature transform descriptors, and vector quantized to match one of 350 words contained in a codebook. The codebook was precomputed from features extracted from a large number of images spanning numerous object categories.

Possible object locations

One important question in the TSI-pLSA model is how to determine the values that the random variable can take on. It is a 4-vector, whose components describe the object抯 centroid as well as x and y scales that define a bounding box around the object, so the space of possible values it can take on is enormous. To limit the number of possible object locations to a reasonable number, normal pLSA is first carried out on the set of images, and for each topic a Gaussian mixture model is fit over the visual words, weighted by . Up to Gaussians are tried (allowing for multiple instances of an object in a single image), where is a constant.

Performance

The authors of the Fergus et al. paper compared performance of the three pLSA algorithms (pLSA, ABS-pLSA, and TSI-pLSA) on handpicked datasets and images returned from Google searches. Performance was measured as the error rate when classifying images in a test set as either containing the image or containing only background.

As expected, training directly on Google data gives higher error rates than training on prepared data.? [1] In about half of the object categories tested do ABS-pLSA and TSI-pLSA perform significantly better than regular pLSA, and in only 2 categories out of 7 does TSI-pLSA perform better than the other two models.

OPTIMOL

OPTIMOL (automatic Online Picture collection via Incremental MOdel Learning) approaches the problem of learning object categories from online image searches by addressing model learning and searching simultaneously. OPTIMOL is an iterative model that updates its model of the target object category while concurrently retrieving more relevant images. [3]

General framework

OPTIMOL was presented as a general iterative framework that is independent of the specific model used for category learning. The algorithm is as follows:

Note that only the most recently added images are used in each round of learning. This allows the algorithm to run on an arbitrarily large number of input images.

Model

The two categories (target object and background) are modeled as Hierarchical Dirichlet processes (HDPs). As in the pLSA approach, it is assumed that the images can be described with the bag of words model. HDP models the distributions of an unspecified number of topics across images in a category, and across categories. The distribution of topics among images in a single category is modeled as a Dirichlet process (a type of non-parametric probability distribution). To allow the sharing of topics across classes, each of these Dirichlet processes is modeled as a sample from another 損arent?Dirichlet process. HDP was first described by Teh et al. in 2005. [4]

Implementation

Initialization

The dataset must be initialized, or seeded with an original batch of images which serve as good exemplars of the object category to be learned. These can be gathered automatically, using the first page or so of images returned by the search engine (which tend to be better than the subsequent images). Alternatively, the initial images can be gathered by hand.

Model learning

To learn the various parameters of the HDP in an incremental manner, Gibbs sampling is used over the latent variables. It is carried out after each new set of images is incorporated into the dataset. Gibbs sampling involves repeatedly sampling from a set of random variables in order to approximate their distributions. Sampling involves generating a value for the random variable in question, based on the state of the other random variables on which it is dependent. Given sufficient samples, a reasonable approximation of the value can be achieved.

Classification

At each iteration, and can be obtained from model learned after the previous round of Gibbs sampling, where is a topic, is a category, and is a single visual word. The likelihood of an image being in a certain class, then, is:

This is computed for each new candidate image per iteration. The image is classified as belonging to the category with the highest likelihood.

Addition to the dataset and "cache set"

In order to qualify for incorporation into the dataset, however, an image must satisfy a stronger condition:

Where and are foreground (object) and background categories, respectively, and the ratio of constants describes the risk of accepting false positives and false negatives. They are adjusted automatically at every iteration, with the cost of a false positive set higher than that of a false negative. This ensures that a better dataset is collected.

Once an image is accepted by meeting the above criterion and incorporated into the dataset, however, it needs to meet another criterion before it is incorporated into the 揷ache set敆the set of images to be used for training. This set is intended to be a diverse subset of the set of accepted images. If the model were trained on all accepted images, it might become more and more highly specialized, only accepting images very similar to previous ones.

Performance

Performance of the OPTIMOL method is defined by three factors:

Object categorization in content-based image retrieval

Typically, image searches only make use of text associated with images. The problem of content-based image retrieval is that of improving search results by taking into account visual information contained in the images themselves. Several CBIR methods make use of classifiers trained on image search results, to refine the search. In other words, object categorization from image search is one component of the system. OPTIMOL, for example, uses a classifier trained on images collected during previous iterations to select additional images for the returned dataset.

Examples of CBIR methods that model object categories from image search are:

Related Research Articles

In machine learning, boosting is an ensemble meta-algorithm for primarily reducing bias, and also variance in supervised learning, and a family of machine learning algorithms that convert weak learners to strong ones. Boosting is based on the question posed by Kearns and Valiant : "Can a set of weak learners create a single strong learner?" A weak learner is defined to be a classifier that is only slightly correlated with the true classification. In contrast, a strong learner is a classifier that is arbitrarily well-correlated with the true classification.

Latent semantic analysis (LSA) is a technique in natural language processing, in particular distributional semantics, of analyzing relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms. LSA assumes that words that are close in meaning will occur in similar pieces of text. A matrix containing word counts per document is constructed from a large piece of text and a mathematical technique called singular value decomposition (SVD) is used to reduce the number of rows while preserving the similarity structure among columns. Documents are then compared by cosine similarity between any two columns. Values close to 1 represent very similar documents while values close to 0 represent very dissimilar documents.

In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population. However, while problems associated with "mixture distributions" relate to deriving the properties of the overall population from those of the sub-populations, "mixture models" are used to make statistical inferences about the properties of the sub-populations given only observations on the pooled population, without sub-population identity information. Mixture models are used for clustering, under the name model-based clustering, and also for density estimation.

<span class="mw-page-title-main">Automatic image annotation</span>

Automatic image annotation is the process by which a computer system automatically assigns metadata in the form of captioning or keywords to a digital image. This application of computer vision techniques is used in image retrieval systems to organize and locate images of interest from a database.

Probabilistic latent semantic analysis (PLSA), also known as probabilistic latent semantic indexing is a statistical technique for the analysis of two-mode and co-occurrence data. In effect, one can derive a low-dimensional representation of the observed variables in terms of their affinity to certain hidden variables, just as in latent semantic analysis, from which PLSA evolved.

In natural language processing, latent Dirichlet allocation (LDA) is a Bayesian network for modeling automatically extracted topics in textual corpora. The LDA is an example of a Bayesian topic model. In this, observations are collected into documents, and each word's presence is attributable to one of the document's topics. Each document will contain a small number of topics.

An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data. An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation. The autoencoder learns an efficient representation (encoding) for a set of data, typically for dimensionality reduction.

In probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution. It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n. The Dirichlet parameter vector captures the prior belief about the situation and can be seen as a pseudocount: observations of each outcome that occur before the actual data is collected. The compounding corresponds to a Pólya urn scheme. It is frequently encountered in Bayesian statistics, machine learning, empirical Bayes methods and classical statistics as an overdispersed multinomial distribution.

In computer vision, the bag-of-words model sometimes called bag-of-visual-words model can be applied to image classification or retrieval, by treating image features as words. In document classification, a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary. In computer vision, a bag of visual words is a vector of occurrence counts of a vocabulary of local image features.

The constellation model is a probabilistic, generative model for category-level object recognition in computer vision. Like other part-based models, the constellation model attempts to represent an object class by a set of N parts under mutual geometric constraints. Because it considers the geometric relationship between different parts, the constellation model differs significantly from appearance-only, or "bag-of-words" representation models, which explicitly disregard the location of image features.

One-shot learning is an object categorization problem, found mostly in computer vision. Whereas most machine learning-based object categorization algorithms require training on hundreds or thousands of examples, one-shot learning aims to classify objects from one, or only a few, examples. The term few-shot learning is also used for these problems, especially when more than one example is needed.

In Bayesian inference, plate notation is a method of representing variables that repeat in a graphical model. Instead of drawing each repeated variable individually, a plate or rectangle is used to group variables into a subgraph that repeat together, and a number is drawn on the plate to represent the number of repetitions of the subgraph in the plate. The assumptions are that the subgraph is duplicated that many times, the variables in the subgraph are indexed by the repetition number, and any links that cross a plate boundary are replicated once for each subgraph repetition.

In computer science, online machine learning is a method of machine learning in which data becomes available in a sequential order and is used to update the best predictor for future data at each step, as opposed to batch learning techniques which generate the best predictor by learning on the entire training data set at once. Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is generated as a function of time, e.g., stock price prediction. Online learning algorithms may be prone to catastrophic interference, a problem that can be addressed by incremental learning approaches.

In machine learning, one-class classification (OCC), also known as unary classification or class-modelling, tries to identify objects of a specific class amongst all objects, by primarily learning from a training set containing only the objects of that class, although there exist variants of one-class classifiers where counter-examples are used to further refine the classification boundary. This is different from and more difficult than the traditional classification problem, which tries to distinguish between two or more classes with the training set containing objects from all the classes. Examples include the monitoring of helicopter gearboxes, motor failure prediction, or the operational status of a nuclear plant as 'normal': In this scenario, there are few, if any, examples of catastrophic system states; only the statistics of normal operation are known.

Within statistics, Dynamic topic models' are generative models that can be used to analyze the evolution of (unobserved) topics of a collection of documents over time. This family of models was proposed by David Blei and John Lafferty and is an extension to Latent Dirichlet Allocation (LDA) that can handle sequential documents.

In statistics and machine learning, the hierarchical Dirichlet process (HDP) is a nonparametric Bayesian approach to clustering grouped data. It uses a Dirichlet process for each group of data, with the Dirichlet processes for all groups sharing a base distribution which is itself drawn from a Dirichlet process. This method allows groups to share statistical strength via sharing of clusters across groups. The base distribution being drawn from a Dirichlet process is important, because draws from a Dirichlet process are atomic probability measures, and the atoms will appear in all group-level Dirichlet processes. Since each atom corresponds to a cluster, clusters are shared across all groups. It was developed by Yee Whye Teh, Michael I. Jordan, Matthew J. Beal and David Blei and published in the Journal of the American Statistical Association in 2006, as a formalization and generalization of the infinite hidden Markov model published in 2002.

Similarity learning is an area of supervised machine learning in artificial intelligence. It is closely related to regression and classification, but the goal is to learn a similarity function that measures how similar or related two objects are. It has applications in ranking, in recommendation systems, visual identity tracking, face verification, and speaker verification.

In machine learning and computer vision, M-theory is a learning framework inspired by feed-forward processing in the ventral stream of visual cortex and originally developed for recognition and classification of objects in visual scenes. M-theory was later applied to other areas, such as speech recognition. On certain image recognition tasks, algorithms based on a specific instantiation of M-theory, HMAX, achieved human-level performance.

In computer vision, rigid motion segmentation is the process of separating regions, features, or trajectories from a video sequence into coherent subsets of space and time. These subsets correspond to independent rigidly moving objects in the scene. The goal of this segmentation is to differentiate and extract the meaningful rigid motion from the background and analyze it. Image segmentation techniques labels the pixels to be a part of pixels with certain characteristics at a particular time. Here, the pixels are segmented depending on its relative movement over a period of time i.e. the time of the video sequence.

<span class="mw-page-title-main">Generative adversarial network</span> Deep learning method

A generative adversarial network (GAN) is a class of machine learning frameworks and a prominent framework for approaching generative AI. The concept was initially developed by Ian Goodfellow and his colleagues in June 2014. In a GAN, two neural networks contest with each other in the form of a zero-sum game, where one agent's gain is another agent's loss.

References

  1. 1 2 3 4 5 Fergus, R.; Fei-Fei, L.; Perona, P.; Zisserman,A. (2005). "Learning Object Categories from Google抯 Image Search" (PDF). Proc. IEEE International Conference on Computer Vision.
  2. Hofmann, Thomas (1999). "Probabilistic Latent Semantic Analysis" (PDF). Uncertainty in Artificial Intelligence. Archived from the original (PDF) on 2007-07-10.
  3. Li, Li-Jia; Wang, Gang; Fei-Fei, Li (2007). "OPTIMOL: automatic Online Picture collection via Incremental MOdel Learning" (PDF). Proc. IEEE Conference on Computer Vision and Pattern Recognition.
  4. Teh, Yw; Jordan, MI; Beal, MJ; Blei,David (2006). "Hierarchical Dirichlet Processes" (PDF). Journal of the American Statistical Association. 101 (476): 1566. CiteSeerX   10.1.1.5.9094 . doi:10.1198/016214506000000302. S2CID   7934949.
  5. Fergus, R.; Perona,P.; Zisserman,A. (2004). "A visual category filter for Google images" (PDF). Proc. 8th European Conf. on Computer Vision.
  6. Berg, T.; Forsyth, D. (2006). "Animals on the web". Proc. Computer Vision and Pattern Recognition. doi:10.1109/CVPR.2006.57.
  7. Yanai, K; Barnard, K. (2005). "Probabilistic web image gathering". ACM SIGMM workshop on Multimedia information retrieval.

See also