Part of a series on |
Bayesian statistics |
---|
Posterior = Likelihood × Prior ÷ Evidence |
Background |
Model building |
Posterior approximation |
Estimators |
Evidence approximation |
Model evaluation |
In statistics, Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm for sampling from a specified multivariate probability distribution when direct sampling from the joint distribution is difficult, but sampling from the conditional distribution is more practical. This sequence can be used to approximate the joint distribution (e.g., to generate a histogram of the distribution); to approximate the marginal distribution of one of the variables, or some subset of the variables (for example, the unknown parameters or latent variables); or to compute an integral (such as the expected value of one of the variables). Typically, some of the variables correspond to observations whose values are known, and hence do not need to be sampled.
Gibbs sampling is commonly used as a means of statistical inference, especially Bayesian inference. It is a randomized algorithm (i.e. an algorithm that makes use of random numbers), and is an alternative to deterministic algorithms for statistical inference such as the expectation–maximization algorithm (EM).
As with other MCMC algorithms, Gibbs sampling generates a Markov chain of samples, each of which is correlated with nearby samples. As a result, care must be taken if independent samples are desired. Generally, samples from the beginning of the chain (the burn-in period) may not accurately represent the desired distribution and are usually discarded.
Gibbs sampling is named after the physicist Josiah Willard Gibbs, in reference to an analogy between the sampling algorithm and statistical physics. The algorithm was described by brothers Stuart and Donald Geman in 1984, some eight decades after the death of Gibbs, [1] and became popularized in the statistics community for calculating marginal probability distribution, especially the posterior distribution. [2]
In its basic version, Gibbs sampling is a special case of the Metropolis–Hastings algorithm. However, in its extended versions (see below), it can be considered a general framework for sampling from a large set of variables by sampling each variable (or in some cases, each group of variables) in turn, and can incorporate the Metropolis–Hastings algorithm (or methods such as slice sampling) to implement one or more of the sampling steps.
Gibbs sampling is applicable when the joint distribution is not known explicitly or is difficult to sample from directly, but the conditional distribution of each variable is known and is easy (or at least, easier) to sample from. The Gibbs sampling algorithm generates an instance from the distribution of each variable in turn, conditional on the current values of the other variables. It can be shown that the sequence of samples constitutes a Markov chain, and the stationary distribution of that Markov chain is just the sought-after joint distribution. [3]
Gibbs sampling is particularly well-adapted to sampling the posterior distribution of a Bayesian network, since Bayesian networks are typically specified as a collection of conditional distributions.
Gibbs sampling, in its basic incarnation, is a special case of the Metropolis–Hastings algorithm. The point of Gibbs sampling is that given a multivariate distribution it is simpler to sample from a conditional distribution than to marginalize by integrating over a joint distribution. Suppose we want to obtain samples of a -dimensional random vector . We proceed iteratively:
If such sampling is performed, these important facts hold:
When performing the sampling:
Furthermore, the conditional distribution of one variable given all others is proportional to the joint distribution, i.e., for all possible value of :
"Proportional to" in this case means that the denominator is not a function of and thus is the same for all values of ; it forms part of the normalization constant for the distribution over . In practice, to determine the nature of the conditional distribution of a factor , it is easiest to factor the joint distribution according to the individual conditional distributions defined by the graphical model over the variables, ignore all factors that are not functions of (all of which, together with the denominator above, constitute the normalization constant), and then reinstate the normalization constant at the end, as necessary. In practice, this means doing one of three things:
Gibbs sampling is commonly used for statistical inference (e.g. determining the best value of a parameter, such as determining the number of people likely to shop at a particular store on a given day, the candidate a voter will most likely vote for, etc.). The idea is that observed data is incorporated into the sampling process by creating separate variables for each piece of observed data and fixing the variables in question to their observed values, rather than sampling from those variables. The distribution of the remaining variables is then effectively a posterior distribution conditioned on the observed data.
The most likely value of a desired parameter (the mode) could then simply be selected by choosing the sample value that occurs most commonly; this is essentially equivalent to maximum a posteriori estimation of a parameter. (Since the parameters are usually continuous, it is often necessary to "bin" the sampled values into one of a finite number of ranges or "bins" in order to get a meaningful estimate of the mode.) More commonly, however, the expected value (mean or average) of the sampled values is chosen; this is a Bayes estimator that takes advantage of the additional data about the entire distribution that is available from Bayesian sampling, whereas a maximization algorithm such as expectation maximization (EM) is capable of only returning a single point from the distribution. For example, for a unimodal distribution the mean (expected value) is usually similar to the mode (most common value), but if the distribution is skewed in one direction, the mean will be moved in that direction, which effectively accounts for the extra probability mass in that direction. (If a distribution is multimodal, the expected value may not return a meaningful point, and any of the modes is typically a better choice.)
Although some of the variables typically correspond to parameters of interest, others are uninteresting ("nuisance") variables introduced into the model to properly express the relationships among variables. Although the sampled values represent the joint distribution over all variables, the nuisance variables can simply be ignored when computing expected values or modes; this is equivalent to marginalizing over the nuisance variables. When a value for multiple variables is desired, the expected value is simply computed over each variable separately. (When computing the mode, however, all variables must be considered together.)
Supervised learning, unsupervised learning and semi-supervised learning (aka learning with missing values) can all be handled by simply fixing the values of all variables whose values are known, and sampling from the remainder.
For observed data, there will be one variable for each observation—rather than, for example, one variable corresponding to the sample mean or sample variance of a set of observations. In fact, there generally will be no variables at all corresponding to concepts such as "sample mean" or "sample variance". Instead, in such a case there will be variables representing the unknown true mean and true variance, and the determination of sample values for these variables results automatically from the operation of the Gibbs sampler.
Generalized linear models (i.e. variations of linear regression) can sometimes be handled by Gibbs sampling as well. For example, probit regression for determining the probability of a given binary (yes/no) choice, with normally distributed priors placed over the regression coefficients, can be implemented with Gibbs sampling because it is possible to add additional variables and take advantage of conjugacy. However, logistic regression cannot be handled this way. One possibility is to approximate the logistic function with a mixture (typically 7–9) of normal distributions. More commonly, however, Metropolis–Hastings is used instead of Gibbs sampling.
Suppose that a sample is taken from a distribution depending on a parameter vector of length , with prior distribution . It may be that is very large and that numerical integration to find the marginal densities of the would be computationally expensive. Then an alternative method of calculating the marginal densities is to create a Markov chain on the space by repeating these two steps:
These steps define a reversible Markov chain with the desired invariant distribution . This can be proved as follows. Define if for all and let denote the probability of a jump from to . Then, the transition probabilities are
So
since is an equivalence relation. Thus the detailed balance equations are satisfied, implying the chain is reversible and it has invariant distribution .
In practice, the index is not chosen at random, and the chain cycles through the indexes in order. In general this gives a non-stationary Markov process, but each individual step will still be reversible, and the overall process will still have the desired stationary distribution (as long as the chain can access all states under the fixed ordering).
Let denote observations generated from the sampling distribution and be a prior supported on the parameter space . Then one of the central goals of the Bayesian statistics is to approximate the posterior density
where the marginal likelihood is assumed to be finite for all .
To explain the Gibbs sampler, we additionally assume that the parameter space is decomposed as
where represents the Cartesian product. Each component parameter space can be a set of scalar components, subvectors, or matrices.
Define a set that complements the . Essential ingredients of the Gibbs sampler is the -th full conditional posterior distribution for each
The following algorithm details a generic Gibbs sampler:
Note that Gibbs sampler is operated by the iterative Monte Carlo scheme within a cycle. The number of samples drawn by the above algorithm formulates Markov Chains with the invariant distribution to be the target density .
Now, for each , define the following information theoretic quantities:
namely, posterior mutual information, posterior differential entropy, and posterior conditional differential entropy, respectively. We can similarly define information theoretic quantities , , and by interchanging the and in the defined quantities. Then, the following equations hold. [4]
.
The mutual information quantifies the reduction in uncertainty of random quantity once we know , a posteriori. It vanishes if and only if and are marginally independent, a posterior. The mutual information can be interpreted as the quantity that is transmitted from the -th step to the -th step within a single cycle of the Gibbs sampler.
Numerous variations of the basic Gibbs sampler exist. The goal of these variations is to reduce the autocorrelation between samples sufficiently to overcome any added computational costs.
In hierarchical Bayesian models with categorical variables, such as latent Dirichlet allocation and various other models used in natural language processing, it is quite common to collapse out the Dirichlet distributions that are typically used as prior distributions over the categorical variables. The result of this collapsing introduces dependencies among all the categorical variables dependent on a given Dirichlet prior, and the joint distribution of these variables after collapsing is a Dirichlet-multinomial distribution. The conditional distribution of a given categorical variable in this distribution, conditioned on the others, assumes an extremely simple form that makes Gibbs sampling even easier than if the collapsing had not been done. The rules are as follows:
In general, any conjugate prior can be collapsed out, if its only children have distributions conjugate to it. The relevant math is discussed in the article on compound distributions. If there is only one child node, the result will often assume a known distribution. For example, collapsing an inverse-gamma-distributed variance out of a network with a single Gaussian child will yield a Student's t-distribution. (For that matter, collapsing both the mean and variance of a single Gaussian child will still yield a Student's t-distribution, provided both are conjugate, i.e. Gaussian mean, inverse-gamma variance.)
If there are multiple child nodes, they will all become dependent, as in the Dirichlet-categorical case. The resulting joint distribution will have a closed form that resembles in some ways the compound distribution, although it will have a product of a number of factors, one for each child node, in it.
In addition, and most importantly, the resulting conditional distribution of one of the child nodes given the others (and also given the parents of the collapsed node(s), but not given the children of the child nodes) will have the same density as the posterior predictive distribution of all the remaining child nodes. Furthermore, the posterior predictive distribution has the same density as the basic compound distribution of a single node, although with different parameters. The general formula is given in the article on compound distributions.
For example, given a Bayes network with a set of conditionally independent identically distributed Gaussian-distributed nodes with conjugate prior distributions placed on the mean and variance, the conditional distribution of one node given the others after compounding out both the mean and variance will be a Student's t-distribution. Similarly, the result of compounding out the gamma prior of a number of Poisson-distributed nodes causes the conditional distribution of one node given the others to assume a negative binomial distribution.
In these cases where compounding produces a well-known distribution, efficient sampling procedures often exist, and using them will often (although not necessarily) be more efficient than not collapsing, and instead sampling both prior and child nodes separately. However, in the case where the compound distribution is not well-known, it may not be easy to sample from, since it generally will not belong to the exponential family and typically will not be log-concave (which would make it easy to sample using adaptive rejection sampling, since a closed form always exists).
In the case where the child nodes of the collapsed nodes themselves have children, the conditional distribution of one of these child nodes given all other nodes in the graph will have to take into account the distribution of these second-level children. In particular, the resulting conditional distribution will be proportional to a product of the compound distribution as defined above, and the conditional distributions of all of the child nodes given their parents (but not given their own children). This follows from the fact that the full conditional distribution is proportional to the joint distribution. If the child nodes of the collapsed nodes are continuous, this distribution will generally not be of a known form, and may well be difficult to sample from despite the fact that a closed form can be written, for the same reasons as described above for non-well-known compound distributions. However, in the particular case that the child nodes are discrete, sampling is feasible, regardless of whether the children of these child nodes are continuous or discrete. In fact, the principle involved here is described in fair detail in the article on the Dirichlet-multinomial distribution.
It is also possible to extend Gibbs sampling in various ways. For example, in the case of variables whose conditional distribution is not easy to sample from, a single iteration of slice sampling or the Metropolis–Hastings algorithm can be used to sample from the variables in question. It is also possible to incorporate variables that are not random variables, but whose value is deterministically computed from other variables. Generalized linear models, e.g. logistic regression (aka "maximum entropy models"), can be incorporated in this fashion. (BUGS, for example, allows this type of mixing of models.)
There are two ways that Gibbs sampling can fail. The first is when there are islands of high-probability states, with no paths between them. For example, consider a probability distribution over 2-bit vectors, where the vectors (0,0) and (1,1) each have probability 1/2, but the other two vectors (0,1) and (1,0) have probability zero. Gibbs sampling will become trapped in one of the two high-probability vectors, and will never reach the other one. More generally, for any distribution over high-dimensional, real-valued vectors, if two particular elements of the vector are perfectly correlated (or perfectly anti-correlated), those two elements will become stuck, and Gibbs sampling will never be able to change them.
The second problem can happen even when all states have nonzero probability and there is only a single island of high-probability states. For example, consider a probability distribution over 100-bit vectors, where the all-zeros vector occurs with probability 1/2, and all other vectors are equally probable, and so have a probability of each. If you want to estimate the probability of the zero vector, it would be sufficient to take 100 or 1000 samples from the true distribution. That would very likely give an answer very close to 1/2. But you would probably have to take more than samples from Gibbs sampling to get the same result. No computer could do this in a lifetime.
This problem occurs no matter how long the burn-in period is. This is because in the true distribution, the zero vector occurs half the time, and those occurrences are randomly mixed in with the nonzero vectors. Even a small sample will see both zero and nonzero vectors. But Gibbs sampling will alternate between returning only the zero vector for long periods (about in a row), then only nonzero vectors for long periods (about in a row). Thus convergence to the true distribution is extremely slow, requiring much more than steps; taking this many steps is not computationally feasible in a reasonable time period. The slow convergence here can be seen as a consequence of the curse of dimensionality. A problem like this can be solved by block sampling the entire 100-bit vector at once. (This assumes that the 100-bit vector is part of a larger set of variables. If this vector is the only thing being sampled, then block sampling is equivalent to not doing Gibbs sampling at all, which by hypothesis would be difficult.)
{{cite book}}
: CS1 maint: multiple names: authors list (link)In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult. New samples are added to the sequence in two steps: first a new sample is proposed based on the previous sample, then the proposed sample is either added to the sequence or rejected depending on the value of the probability distribution at that point. The resulting sequence can be used to approximate the distribution or to compute an integral.
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.
In statistics, sufficiency is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. A sufficient statistic contains all of the information that the dataset provides about the model parameters. It is closely related to the concepts of an ancillary statistic which contains no information about the model parameters, and of a complete statistic which only contains information about the parameters and no ancillary information.
A Bayesian network is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.
In probability and statistics, an exponential family is a parametric set of probability distributions of a certain form, specified below. This special form is chosen for mathematical convenience, including the enabling of the user to calculate expectations, covariances using differentiation based on some useful algebraic properties, as well as for generality, as exponential families are in a sense very natural sets of distributions to consider. The term exponential class is sometimes used in place of "exponential family", or the older term Koopman–Darmois family. Sometimes loosely referred to as "the" exponential family, this class of distributions is distinct because they all possess a variety of desirable properties, most importantly the existence of a sufficient statistic.
A prior probability distribution of an uncertain quantity, often simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable.
In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.
In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population. However, while problems associated with "mixture distributions" relate to deriving the properties of the overall population from those of the sub-populations, "mixture models" are used to make statistical inferences about the properties of the sub-populations given only observations on the pooled population, without sub-population identity information. Mixture models are used for clustering, under the name model-based clustering, and also for density estimation.
In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables.
In statistics, the multivariate t-distribution is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure.
In probability theory, Dirichlet processes are a family of stochastic processes whose realizations are probability distributions. In other words, a Dirichlet process is a probability distribution whose range is itself a set of probability distributions. It is often used in Bayesian inference to describe the prior knowledge about the distribution of random variables—how likely it is that the random variables are distributed according to one or another particular distribution.
Bayesian econometrics is a branch of econometrics which applies Bayesian principles to economic modelling. Bayesianism is based on a degree-of-belief interpretation of probability, as opposed to a relative-frequency interpretation.
Graphical models have become powerful frameworks for protein structure prediction, protein–protein interaction, and free energy calculations for protein structures. Using a graphical model to represent the protein structure allows the solution of many problems including secondary structure prediction, protein-protein interactions, protein-drug interaction, and free energy calculations.
Exponential Random Graph Models (ERGMs) are a family of statistical models for analyzing data from social and other networks. Examples of networks examined using ERGM include knowledge networks, organizational networks, colleague networks, social media networks, networks of scientific development, and others.
Bayesian hierarchical modelling is a statistical model written in multiple levels that estimates the parameters of the posterior distribution using the Bayesian method. The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the uncertainty that is present. The result of this integration is the posterior distribution, also known as the updated probability estimate, as additional evidence on the prior distribution is acquired.
In computational statistics, the pseudo-marginal Metropolis–Hastings algorithm is a Monte Carlo method to sample from a probability distribution. It is an instance of the popular Metropolis–Hastings algorithm that extends its use to cases where the target density is not available analytically. It relies on the fact that the Metropolis–Hastings algorithm can still sample from the correct target distribution if the target density in the acceptance ratio is replaced by an estimate. It is especially popular in Bayesian statistics, where it is applied if the likelihood function is not tractable.
Dependency networks (DNs) are graphical models, similar to Markov networks, wherein each vertex (node) corresponds to a random variable and each edge captures dependencies among variables. Unlike Bayesian networks, DNs may contain cycles. Each node is associated to a conditional probability table, which determines the realization of the random variable given its parents.
Nonlinear mixed-effects models constitute a class of statistical models generalizing linear mixed-effects models. Like linear mixed-effects models, they are particularly useful in settings where there are multiple measurements within the same statistical units or when there are dependencies between measurements on related statistical units. Nonlinear mixed-effects models are applied in many fields including medicine, public health, pharmacology, and ecology.
A Stein discrepancy is a statistical divergence between two probability measures that is rooted in Stein's method. It was first formulated as a tool to assess the quality of Markov chain Monte Carlo samplers, but has since been used in diverse settings in statistics, machine learning and computer science.
Integrated nested Laplace approximations (INLA) is a method for approximate Bayesian inference based on Laplace's method. It is designed for a class of models called latent Gaussian models (LGMs), for which it can be a fast and accurate alternative for Markov chain Monte Carlo methods to compute posterior marginal distributions. Due to its relative speed even with large data sets for certain problems and models, INLA has been a popular inference method in applied statistics, in particular spatial statistics, ecology, and epidemiology. It is also possible to combine INLA with a finite element method solution of a stochastic partial differential equation to study e.g. spatial point processes and species distribution models. The INLA method is implemented in the R-INLA R package.