Mutual information

Last updated
Venn diagram showing additive and subtractive relationships of various information measures associated with correlated variables
X
{\displaystyle X}
and
Y
{\displaystyle Y}
. The area contained by either circle is the joint entropy
H
(
X
,
Y
)
{\displaystyle \mathrm {H} (X,Y)}
. The circle on the left (red and violet) is the individual entropy
H
(
X
)
{\displaystyle \mathrm {H} (X)}
, with the red being the conditional entropy
H
(
X
|
Y
)
{\displaystyle \mathrm {H} (X\mid Y)}
. The circle on the right (blue and violet) is
H
(
Y
)
{\displaystyle \mathrm {H} (Y)}
, with the blue being
H
(
Y
|
X
)
{\displaystyle \mathrm {H} (Y\mid X)}
. The violet is the mutual information
I
[?]
(
X
;
Y
)
{\displaystyle \operatorname {I} (X;Y)}
. Entropy-mutual-information-relative-entropy-relation-diagram.svg
Venn diagram showing additive and subtractive relationships of various information measures associated with correlated variables and . The area contained by either circle is the joint entropy . The circle on the left (red and violet) is the individual entropy , with the red being the conditional entropy . The circle on the right (blue and violet) is , with the blue being . The violet is the mutual information .

In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the "amount of information" (in units such as shannons (bits), nats or hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable.

Contents

Not limited to real-valued random variables and linear dependence like the correlation coefficient, MI is more general and determines how different the joint distribution of the pair is from the product of the marginal distributions of and . MI is the expected value of the pointwise mutual information (PMI).

The quantity was defined and analyzed by Claude Shannon in his landmark paper "A Mathematical Theory of Communication", although he did not call it "mutual information". This term was coined later by Robert Fano. [2] Mutual Information is also known as information gain.

Definition

Let be a pair of random variables with values over the space . If their joint distribution is and the marginal distributions are and , the mutual information is defined as

where is the Kullback–Leibler divergence, and is the outer product distribution which assigns probability to each .

Notice, as per property of the Kullback–Leibler divergence, that is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when and are independent (and hence observing tells you nothing about ). is non-negative, it is a measure of the price for encoding as a pair of independent random variables when in reality they are not.

If the natural logarithm is used, the unit of mutual information is the nat. If the log base 2 is used, the unit of mutual information is the shannon, also known as the bit. If the log base 10 is used, the unit of mutual information is the hartley, also known as the ban or the dit.

In terms of PMFs for discrete distributions

The mutual information of two jointly discrete random variables and is calculated as a double sum: [3] :20

(Eq.1)

where is the joint probability mass function of and , and and are the marginal probability mass functions of and respectively.

In terms of PDFs for continuous distributions

In the case of jointly continuous random variables, the double sum is replaced by a double integral: [3] :251

(Eq.2)

where is now the joint probability density function of and , and and are the marginal probability density functions of and respectively.

Motivation

Intuitively, mutual information measures the information that and share: It measures how much knowing one of these variables reduces uncertainty about the other. For example, if and are independent, then knowing does not give any information about and vice versa, so their mutual information is zero. At the other extreme, if is a deterministic function of and is a deterministic function of then all information conveyed by is shared with : knowing determines the value of and vice versa. As a result, the mutual information is the same as the uncertainty contained in (or ) alone, namely the entropy of (or ). A very special case of this is when and are the same random variable.

Mutual information is a measure of the inherent dependence expressed in the joint distribution of and relative to the marginal distribution of and under the assumption of independence. Mutual information therefore measures dependence in the following sense: if and only if and are independent random variables. This is easy to see in one direction: if and are independent, then , and therefore:

Moreover, mutual information is nonnegative (i.e. see below) and symmetric (i.e. see below).

Properties

Nonnegativity

Using Jensen's inequality on the definition of mutual information we can show that is non-negative, i.e. [3] :28

Symmetry

The proof is given considering the relationship with entropy, as shown below.

Supermodularity under independence

If is independent of , then

. [4]

Relation to conditional and joint entropy

Mutual information can be equivalently expressed as:

where and are the marginal entropies, and are the conditional entropies, and is the joint entropy of and .

Notice the analogy to the union, difference, and intersection of two sets: in this respect, all the formulas given above are apparent from the Venn diagram reported at the beginning of the article.

In terms of a communication channel in which the output is a noisy version of the input , these relations are summarised in the figure:

The relationships between information theoretic quantities Figchannel2017ab.svg
The relationships between information theoretic quantities

Because is non-negative, consequently, . Here we give the detailed deduction of for the case of jointly discrete random variables:

The proofs of the other identities above are similar. The proof of the general case (not just discrete) is similar, with integrals replacing sums.

Intuitively, if entropy is regarded as a measure of uncertainty about a random variable, then is a measure of what does not say about . This is "the amount of uncertainty remaining about after is known", and thus the right side of the second of these equalities can be read as "the amount of uncertainty in , minus the amount of uncertainty in which remains after is known", which is equivalent to "the amount of uncertainty in which is removed by knowing ". This corroborates the intuitive meaning of mutual information as the amount of information (that is, reduction in uncertainty) that knowing either variable provides about the other.

Note that in the discrete case and therefore . Thus , and one can formulate the basic principle that a variable contains at least as much information about itself as any other variable can provide.

Relation to Kullback–Leibler divergence

For jointly discrete or jointly continuous pairs , mutual information is the Kullback–Leibler divergence from the product of the marginal distributions, , of the joint distribution , that is,

Furthermore, let be the conditional mass or density function. Then, we have the identity

The proof for jointly discrete random variables is as follows:

Similarly this identity can be established for jointly continuous random variables.

Note that here the Kullback–Leibler divergence involves integration over the values of the random variable only, and the expression still denotes a random variable because is random. Thus mutual information can also be understood as the expectation of the Kullback–Leibler divergence of the univariate distribution of from the conditional distribution of given : the more different the distributions and are on average, the greater the information gain.

Bayesian estimation of mutual information

If samples from a joint distribution are available, a Bayesian approach can be used to estimate the mutual information of that distribution. The first work to do this, which also showed how to do Bayesian estimation of many other information-theoretic properties besides mutual information, was. [5] Subsequent researchers have rederived [6] and extended [7] this analysis. See [8] for a recent paper based on a prior specifically tailored to estimation of mutual information per se. Besides, recently an estimation method accounting for continuous and multivariate outputs, , was proposed in . [9]

Independence assumptions

The Kullback-Leibler divergence formulation of the mutual information is predicated on that one is interested in comparing to the fully factorized outer product . In many problems, such as non-negative matrix factorization, one is interested in less extreme factorizations; specifically, one wishes to compare to a low-rank matrix approximation in some unknown variable ; that is, to what degree one might have

Alternately, one might be interested in knowing how much more information carries over its factorization. In such a case, the excess information that the full distribution carries over the matrix factorization is given by the Kullback-Leibler divergence

The conventional definition of the mutual information is recovered in the extreme case that the process has only one value for .

Variations

Several variations on mutual information have been proposed to suit various needs. Among these are normalized variants and generalizations to more than two variables.

Metric

Many applications require a metric, that is, a distance measure between pairs of points. The quantity

satisfies the properties of a metric (triangle inequality, non-negativity, indiscernability and symmetry), where equality is understood to mean that can be completely determined from . [10]

This distance metric is also known as the variation of information.

If are discrete random variables then all the entropy terms are non-negative, so and one can define a normalized distance

The metric is a universal metric, in that if any other distance measure places and close by, then the will also judge them close. [11] [ dubious discuss ]

Plugging in the definitions shows that

This is known as the Rajski Distance. [12] In a set-theoretic interpretation of information (see the figure for Conditional entropy), this is effectively the Jaccard distance between and .

Finally,

is also a metric.

Conditional mutual information

Sometimes it is useful to express the mutual information of two random variables conditioned on a third.

For jointly discrete random variables this takes the form

which can be simplified as

For jointly continuous random variables this takes the form

which can be simplified as

Conditioning on a third random variable may either increase or decrease the mutual information, but it is always true that

for discrete, jointly distributed random variables . This result has been used as a basic building block for proving other inequalities in information theory.

Interaction information

Several generalizations of mutual information to more than two random variables have been proposed, such as total correlation (or multi-information) and dual total correlation. The expression and study of multivariate higher-degree mutual information was achieved in two seemingly independent works: McGill (1954) [13] who called these functions "interaction information", and Hu Kuo Ting (1962). [14] Interaction information is defined for one variable as follows:

and for

Some authors reverse the order of the terms on the right-hand side of the preceding equation, which changes the sign when the number of random variables is odd. (And in this case, the single-variable expression becomes the negative of the entropy.) Note that

Multivariate statistical independence

The multivariate mutual information functions generalize the pairwise independence case that states that if and only if , to arbitrary numerous variable. n variables are mutually independent if and only if the mutual information functions vanish with (theorem 2 [15] ). In this sense, the can be used as a refined statistical independence criterion.

Applications

For 3 variables, Brenner et al. applied multivariate mutual information to neural coding and called its negativity "synergy" [16] and Watkinson et al. applied it to genetic expression. [17] For arbitrary k variables, Tapia et al. applied multivariate mutual information to gene expression. [18] [15] It can be zero, positive, or negative. [14] The positivity corresponds to relations generalizing the pairwise correlations, nullity corresponds to a refined notion of independence, and negativity detects high dimensional "emergent" relations and clusterized datapoints [18] ).

One high-dimensional generalization scheme which maximizes the mutual information between the joint distribution and other target variables is found to be useful in feature selection. [19]

Mutual information is also used in the area of signal processing as a measure of similarity between two signals. For example, FMI metric [20] is an image fusion performance measure that makes use of mutual information in order to measure the amount of information that the fused image contains about the source images. The Matlab code for this metric can be found at. [21] A python package for computing all multivariate mutual informations, conditional mutual information, joint entropies, total correlations, information distance in a dataset of n variables is available. [22]

Directed information

Directed information, , measures the amount of information that flows from the process to , where denotes the vector and denotes . The term directed information was coined by James Massey and is defined as

.

Note that if , the directed information becomes the mutual information. Directed information has many applications in problems where causality plays an important role, such as capacity of channel with feedback. [23] [24]

Normalized variants

Normalized variants of the mutual information are provided by the coefficients of constraint, [25] uncertainty coefficient [26] or proficiency: [27]

The two coefficients have a value ranging in [0, 1], but are not necessarily equal. This measure is not symmetric. If one desires a symmetric measure they can consider the following redundancy measure:

which attains a minimum of zero when the variables are independent and a maximum value of

when one variable becomes completely redundant with the knowledge of the other. See also Redundancy (information theory) .

Another symmetrical measure is the symmetric uncertainty( Witten & Frank 2005 ), given by

which represents the harmonic mean of the two uncertainty coefficients . [26]

If we consider mutual information as a special case of the total correlation or dual total correlation, the normalized version are respectively,

and

This normalized version also known as Information Quality Ratio (IQR) which quantifies the amount of information of a variable based on another variable against total uncertainty: [28]

There's a normalization [29] which derives from first thinking of mutual information as an analogue to covariance (thus Shannon entropy is analogous to variance). Then the normalized mutual information is calculated akin to the Pearson correlation coefficient,

Weighted variants

In the traditional formulation of the mutual information,

each event or object specified by is weighted by the corresponding probability . This assumes that all objects or events are equivalent apart from their probability of occurrence. However, in some applications it may be the case that certain objects or events are more significant than others, or that certain patterns of association are more semantically important than others.

For example, the deterministic mapping may be viewed as stronger than the deterministic mapping , although these relationships would yield the same mutual information. This is because the mutual information is not sensitive at all to any inherent ordering in the variable values (Cronbach 1954, Coombs, Dawes & Tversky 1970, Lockhead 1970), and is therefore not sensitive at all to the form of the relational mapping between the associated variables. If it is desired that the former relation—showing agreement on all variable values—be judged stronger than the later relation, then it is possible to use the following weighted mutual information( Guiasu 1977 ).

which places a weight on the probability of each variable value co-occurrence, . This allows that certain probabilities may carry more or less significance than others, thereby allowing the quantification of relevant holistic or Prägnanz factors. In the above example, using larger relative weights for , , and would have the effect of assessing greater informativeness for the relation than for the relation , which may be desirable in some cases of pattern recognition, and the like. This weighted mutual information is a form of weighted KL-Divergence, which is known to take negative values for some inputs, [30] and there are examples where the weighted mutual information also takes negative values. [31]

Adjusted mutual information

A probability distribution can be viewed as a partition of a set. One may then ask: if a set were partitioned randomly, what would the distribution of probabilities be? What would the expectation value of the mutual information be? The adjusted mutual information or AMI subtracts the expectation value of the MI, so that the AMI is zero when two different distributions are random, and one when two distributions are identical. The AMI is defined in analogy to the adjusted Rand index of two different partitions of a set.

Absolute mutual information

Using the ideas of Kolmogorov complexity, one can consider the mutual information of two sequences independent of any probability distribution:

To establish that this quantity is symmetric up to a logarithmic factor () one requires the chain rule for Kolmogorov complexity ( Li & Vitányi 1997 ). Approximations of this quantity via compression can be used to define a distance measure to perform a hierarchical clustering of sequences without having any domain knowledge of the sequences ( Cilibrasi & Vitányi 2005 ).

Linear correlation

Unlike correlation coefficients, such as the product moment correlation coefficient, mutual information contains information about all dependence—linear and nonlinear—and not just linear dependence as the correlation coefficient measures. However, in the narrow case that the joint distribution for and is a bivariate normal distribution (implying in particular that both marginal distributions are normally distributed), there is an exact relationship between and the correlation coefficient ( Gel'fand & Yaglom 1957 ).

The equation above can be derived as follows for a bivariate Gaussian:

Therefore,

For discrete data

When and are limited to be in a discrete number of states, observation data is summarized in a contingency table, with row variable (or ) and column variable (or ). Mutual information is one of the measures of association or correlation between the row and column variables.

Other measures of association include Pearson's chi-squared test statistics, G-test statistics, etc. In fact, with the same log base, mutual information will be equal to the G-test log-likelihood statistic divided by , where is the sample size.

Applications

In many applications, one wants to maximize mutual information (thus increasing dependencies), which is often equivalent to minimizing conditional entropy. Examples include:

where is the number of times the bigram xy appears in the corpus, is the number of times the unigram x appears in the corpus, B is the total number of bigrams, and U is the total number of unigrams. [32]

See also

Notes

  1. Cover, Thomas M.; Thomas, Joy A. (2005). Elements of information theory (PDF). John Wiley & Sons, Ltd. pp. 13–55. ISBN   9780471748823.
  2. Kreer, J. G. (1957). "A question of terminology". IRE Transactions on Information Theory. 3 (3): 208. doi:10.1109/TIT.1957.1057418.
  3. 1 2 3 Cover, T.M.; Thomas, J.A. (1991). Elements of Information Theory (Wiley ed.). John Wiley & Sons. ISBN   978-0-471-24195-9.
  4. Janssen, Joseph; Guan, Vincent; Robeva, Elina (2023). "Ultra-marginal Feature Importance: Learning from Data with Causal Guarantees". International Conference on Artificial Intelligence and Statistics: 10782–10814. arXiv: 2204.09938 .
  5. Wolpert, D.H.; Wolf, D.R. (1995). "Estimating functions of probability distributions from a finite set of samples". Physical Review E. 52 (6): 6841–6854. Bibcode:1995PhRvE..52.6841W. CiteSeerX   10.1.1.55.7122 . doi:10.1103/PhysRevE.52.6841. PMID   9964199. S2CID   9795679.
  6. Hutter, M. (2001). "Distribution of Mutual Information". Advances in Neural Information Processing Systems.
  7. Archer, E.; Park, I.M.; Pillow, J. (2013). "Bayesian and Quasi-Bayesian Estimators for Mutual Information from Discrete Data". Entropy. 15 (12): 1738–1755. Bibcode:2013Entrp..15.1738A. CiteSeerX   10.1.1.294.4690 . doi: 10.3390/e15051738 .
  8. Wolpert, D.H; DeDeo, S. (2013). "Estimating Functions of Distributions Defined over Spaces of Unknown Size". Entropy. 15 (12): 4668–4699. arXiv: 1311.4548 . Bibcode:2013Entrp..15.4668W. doi: 10.3390/e15114668 . S2CID   2737117.
  9. Tomasz Jetka; Karol Nienaltowski; Tomasz Winarski; Slawomir Blonski; Michal Komorowski (2019), "Information-theoretic analysis of multivariate single-cell signaling responses", PLOS Computational Biology , 15 (7): e1007132, arXiv: 1808.05581 , Bibcode:2019PLSCB..15E7132J, doi: 10.1371/journal.pcbi.1007132 , PMC   6655862 , PMID   31299056
  10. Rajski, C. (1961). "A metric space of discrete probability distributions". Information and Control. 4 (4): 371–377. doi:10.1016/S0019-9958(61)80055-7.
  11. Kraskov, Alexander; Stögbauer, Harald; Andrzejak, Ralph G.; Grassberger, Peter (2003). "Hierarchical Clustering Based on Mutual Information". arXiv: q-bio/0311039 . Bibcode:2003q.bio....11039K.{{cite journal}}: Cite journal requires |journal= (help)
  12. Rajski, C. (1961). "A metric space of discrete probability distributions". Information and Control. 4 (4): 371–377. doi:10.1016/S0019-9958(61)80055-7.
  13. McGill, W. (1954). "Multivariate information transmission". Psychometrika. 19 (1): 97–116. doi:10.1007/BF02289159. S2CID   126431489.
  14. 1 2 Hu, K.T. (1962). "On the Amount of Information". Theory Probab. Appl. 7 (4): 439–447. doi:10.1137/1107041.
  15. 1 2 Baudot, P.; Tapia, M.; Bennequin, D.; Goaillard, J.M. (2019). "Topological Information Data Analysis". Entropy. 21 (9). 869. arXiv: 1907.04242 . Bibcode:2019Entrp..21..869B. doi: 10.3390/e21090869 . PMC   7515398 . S2CID   195848308.
  16. Brenner, N.; Strong, S.; Koberle, R.; Bialek, W. (2000). "Synergy in a Neural Code". Neural Comput. 12 (7): 1531–1552. doi:10.1162/089976600300015259. PMID   10935917. S2CID   600528.
  17. Watkinson, J.; Liang, K.; Wang, X.; Zheng, T.; Anastassiou, D. (2009). "Inference of Regulatory Gene Interactions from Expression Data Using Three-Way Mutual Information". Chall. Syst. Biol. Ann. N. Y. Acad. Sci. 1158 (1): 302–313. Bibcode:2009NYASA1158..302W. doi:10.1111/j.1749-6632.2008.03757.x. PMID   19348651. S2CID   8846229.
  18. 1 2 Tapia, M.; Baudot, P.; Formizano-Treziny, C.; Dufour, M.; Goaillard, J.M. (2018). "Neurotransmitter identity and electrophysiological phenotype are genetically coupled in midbrain dopaminergic neurons". Sci. Rep. 8 (1): 13637. Bibcode:2018NatSR...813637T. doi:10.1038/s41598-018-31765-z. PMC   6134142 . PMID   30206240.
  19. Christopher D. Manning; Prabhakar Raghavan; Hinrich Schütze (2008). An Introduction to Information Retrieval. Cambridge University Press. ISBN   978-0-521-86571-5.
  20. Haghighat, M. B. A.; Aghagolzadeh, A.; Seyedarabi, H. (2011). "A non-reference image fusion metric based on mutual information of image features". Computers & Electrical Engineering. 37 (5): 744–756. doi:10.1016/j.compeleceng.2011.07.012. S2CID   7738541.
  21. "Feature Mutual Information (FMI) metric for non-reference image fusion - File Exchange - MATLAB Central". www.mathworks.com. Retrieved 4 April 2018.
  22. "InfoTopo: Topological Information Data Analysis. Deep statistical unsupervised and supervised learning - File Exchange - Github". github.com/pierrebaudot/infotopopy/. Retrieved 26 September 2020.
  23. Massey, James (1990). "Causality, Feedback And Directed Informatio". Proc. 1990 Intl. Symp. on Info. Th. and its Applications, Waikiki, Hawaii, Nov. 27-30, 1990. CiteSeerX   10.1.1.36.5688 .
  24. Permuter, Haim Henry; Weissman, Tsachy; Goldsmith, Andrea J. (February 2009). "Finite State Channels With Time-Invariant Deterministic Feedback". IEEE Transactions on Information Theory. 55 (2): 644–662. arXiv: cs/0608070 . doi:10.1109/TIT.2008.2009849. S2CID   13178.
  25. Coombs, Dawes & Tversky 1970.
  26. 1 2 Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 14.7.3. Conditional Entropy and Mutual Information". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN   978-0-521-88068-8. Archived from the original on 2011-08-11. Retrieved 2011-08-13.
  27. White, Jim; Steingold, Sam; Fournelle, Connie. Performance Metrics for Group-Detection Algorithms (PDF). Interface 2004. Archived from the original (PDF) on 2016-07-05. Retrieved 2014-02-19.
  28. Wijaya, Dedy Rahman; Sarno, Riyanarto; Zulaika, Enny (2017). "Information Quality Ratio as a novel metric for mother wavelet selection". Chemometrics and Intelligent Laboratory Systems. 160: 59–71. doi:10.1016/j.chemolab.2016.11.012.
  29. Strehl, Alexander; Ghosh, Joydeep (2003). "Cluster Ensembles – A Knowledge Reuse Framework for Combining Multiple Partitions" (PDF). The Journal of Machine Learning Research. 3: 583–617. doi:10.1162/153244303321897735.
  30. Kvålseth, T. O. (1991). "The relative useful information measure: some comments". Information Sciences. 56 (1): 35–38. doi:10.1016/0020-0255(91)90022-m.
  31. Pocock, A. (2012). Feature Selection Via Joint Likelihood (PDF) (Thesis).
  32. 1 2 Parsing a Natural Language Using Mutual Information Statistics by David M. Magerman and Mitchell P. Marcus
  33. Hugh Everett Theory of the Universal Wavefunction, Thesis, Princeton University, (1956, 1973), pp 1–140 (page 30)
  34. Everett, Hugh (1957). "Relative State Formulation of Quantum Mechanics". Reviews of Modern Physics. 29 (3): 454–462. Bibcode:1957RvMP...29..454E. doi:10.1103/revmodphys.29.454. Archived from the original on 2011-10-27. Retrieved 2012-07-16.
  35. Nicoletti, Giorgio; Busiello, Daniel Maria (2021-11-22). "Mutual Information Disentangles Interactions from Changing Environments". Physical Review Letters. 127 (22): 228301. arXiv: 2107.08985 . Bibcode:2021PhRvL.127v8301N. doi:10.1103/PhysRevLett.127.228301. PMID   34889638. S2CID   236087228.
  36. Nicoletti, Giorgio; Busiello, Daniel Maria (2022-07-29). "Mutual information in changing environments: Nonlinear interactions, out-of-equilibrium systems, and continuously varying diffusivities". Physical Review E. 106 (1): 014153. arXiv: 2204.01644 . Bibcode:2022PhRvE.106a4153N. doi:10.1103/PhysRevE.106.014153. PMID   35974654.
  37. GlobalMIT at Google Code
  38. Lee, Se Yoon (2021). "Gibbs sampler and coordinate ascent variational inference: A set-theoretical review". Communications in Statistics - Theory and Methods. 51 (6): 1549–1568. arXiv: 2008.01006 . doi:10.1080/03610926.2021.1921214. S2CID   220935477.
  39. Keys, Dustin; Kholikov, Shukur; Pevtsov, Alexei A. (February 2015). "Application of Mutual Information Methods in Time Distance Helioseismology". Solar Physics. 290 (3): 659–671. arXiv: 1501.05597 . Bibcode:2015SoPh..290..659K. doi:10.1007/s11207-015-0650-y. S2CID   118472242.
  40. Invariant Information Clustering for Unsupervised Image Classification and Segmentation by Xu Ji, Joao Henriques and Andrea Vedaldi
  41. Nicoletti, Giorgio; Busiello, Daniel Maria (2024-04-08). "Information Propagation in Multilayer Systems with Higher-Order Interactions across Timescales". Physical Review X. 14 (2): 021007. arXiv: 2312.06246 . Bibcode:2024PhRvX..14b1007N. doi:10.1103/PhysRevX.14.021007.

Related Research Articles

<span class="mw-page-title-main">Entropy (information theory)</span> Expected amount of information needed to specify the output of a stochastic data source

In information theory, the entropy of a random variable quantifies the average level of uncertainty or information associated with the variable's potential states or possible outcomes. This measures the expected amount of information needed to describe the state of the variable, considering the distribution of probabilities across all potential states. Given a discrete random variable , which takes values in the set and is distributed according to , the entropy is where denotes the sum over the variable's possible values. The choice of base for , the logarithm, varies for different applications. Base 2 gives the unit of bits, while base e gives "natural units" nat, and base 10 gives units of "dits", "bans", or "hartleys". An equivalent definition of entropy is the expected value of the self-information of a variable.

<span class="mw-page-title-main">Independence (probability theory)</span> When the occurrence of one event does not affect the likelihood of another

Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other.

<span class="mw-page-title-main">Geometric distribution</span> Probability distribution

In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions:

<span class="mw-page-title-main">Multivariate normal distribution</span> Generalization of the one-dimensional normal distribution to higher dimensions

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables, each of which clusters around a mean value.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.

In information theory, the information content, self-information, surprisal, or Shannon information is a basic quantity derived from the probability of a particular event occurring from a random variable. It can be thought of as an alternative way of expressing probability, much like odds or log-odds, but which has particular mathematical advantages in the setting of information theory.

Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics.

<span class="mw-page-title-main">Conditional entropy</span> Measure of relative information in probability theory

In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons, nats, or hartleys. The entropy of conditioned on is written as .

<span class="mw-page-title-main">Joint entropy</span> Measure of information in probability and information theory

In information theory, joint entropy is a measure of the uncertainty associated with a set of variables.

In mathematical statistics, the Kullback–Leibler (KL) divergence, denoted , is a type of statistical distance: a measure of how one reference probability distribution P is different from a second probability distribution Q. Mathematically, it is defined as

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes:

  1. To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables.
  2. To derive a lower bound for the marginal likelihood of the observed data. This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data.

In information theory, the Rényi entropy is a quantity that generalizes various notions of entropy, including Hartley entropy, Shannon entropy, collision entropy, and min-entropy. The Rényi entropy is named after Alfréd Rényi, who looked for the most general way to quantify information while preserving additivity for independent events. In the context of fractal dimension estimation, the Rényi entropy forms the basis of the concept of generalized dimensions.

In information theory, the cross-entropy between two probability distributions and , over the same underlying set of events, measures the average number of bits needed to identify an event drawn from the set when the coding scheme used for the set is optimized for an estimated probability distribution , rather than the true distribution .

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

Differential entropy is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not. The actual continuous version of discrete entropy is the limiting density of discrete points (LDDP). Differential entropy is commonly encountered in the literature, but it is a limiting case of the LDDP, and one that loses its fundamental association with discrete entropy.

In information theory, information dimension is an information measure for random vectors in Euclidean space, based on the normalized entropy of finely quantized versions of the random vectors. This concept was first introduced by Alfréd Rényi in 1959.

This article discusses how information theory is related to measure theory.

<span class="mw-page-title-main">Quantities of information</span>

The mathematical theory of information is based on probability theory and statistics, and measures information with several quantities of information. The choice of logarithmic base in the following formulae determines the unit of information entropy that is used. The most common unit of information is the bit, or more correctly the shannon, based on the binary logarithm. Although "bit" is more frequently used in place of "shannon", its name is not distinguished from the bit as used in data-processing to refer to a binary value or stream regardless of its entropy Other units include the nat, based on the natural logarithm, and the hartley, based on the base 10 or common logarithm.

<span class="mw-page-title-main">Conditional mutual information</span> Information theory

In probability theory, particularly information theory, the conditional mutual information is, in its most basic form, the expected value of the mutual information of two random variables given the value of a third.

References