Quantum mutual information

Last updated

In quantum information theory, quantum mutual information, or von Neumann mutual information, after John von Neumann, is a measure of correlation between subsystems of quantum state. It is the quantum mechanical analog of Shannon mutual information.

Contents

Motivation

For simplicity, it will be assumed that all objects in the article are finite-dimensional.

The definition of quantum mutual entropy is motivated by the classical case. For a probability distribution of two variables p(x, y), the two marginal distributions are

The classical mutual information I(X:Y) is defined by

where S(q) denotes the Shannon entropy of the probability distribution q.

One can calculate directly

So the mutual information is

Where the logarithm is taken in basis 2 to obtain the mutual information in bits. But this is precisely the relative entropy between p(x, y) and p(x)p(y). In other words, if we assume the two variables x and y to be uncorrelated, mutual information is the discrepancy in uncertainty resulting from this (possibly erroneous) assumption.

It follows from the property of relative entropy that I(X:Y) 0 and equality holds if and only if p(x, y) = p(x)p(y).

Definition

The quantum mechanical counterpart of classical probability distributions are modeled with density matrices.

Consider a quantum system that can be divided into two parts, A and B, such that independent measurements can be made on either part. The state space of the entire quantum system is then the tensor product of the spaces for the two parts.

Let ρAB be a density matrix acting on states in HAB. The von Neumann entropy of a density matrix S(ρ), is the quantum mechanical analogy of the Shannon entropy.

For a probability distribution p(x,y), the marginal distributions are obtained by integrating away the variables x or y. The corresponding operation for density matrices is the partial trace. So one can assign to ρ a state on the subsystem A by

where TrB is partial trace with respect to system B. This is the reduced state of ρAB on system A. The reduced von Neumann entropy of ρAB with respect to system A is

S(ρB) is defined in the same way.

It can now be seen that the definition of quantum mutual information, corresponding to the classical definition, should be as follows.

Quantum mutual information can be interpreted the same way as in the classical case: it can be shown that

where denotes quantum relative entropy. Note that there is an alternative generalization of mutual information to the quantum case. The difference between the two for a given state is called quantum discord, a measure for the quantum correlations of the state in question.

Properties

When the state is pure (and thus ), the mutual information is twice the entanglement entropy of the state:

A positive quantum mutual information is not necessarily indicative of entanglement, however. A classical mixture of separable states will always have zero entanglement, but can have nonzero QMI, such as

In this case, the state is merely a classically correlated state.

Multiparty generalization

Suppose a system is composed by n subsystems then: [1]

where and the sum is over all the distinct combinations of the subsystem without repetition.

For example, take :

Take now :

Note that what we are actually doing is taking the partial trace over one subsystem per time, take the example, in the first term we are tracing over , in the second term the trace is over and so on.

Related Research Articles

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between quantum systems

Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations:

  1. when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and
  2. when one wants to describe a physical system that is entangled with another, without describing their combined state; this case is typical for a system interacting with some environment.

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.

The joint quantum entropy generalizes the classical joint entropy to the context of quantum information theory. Intuitively, given two quantum states and , represented as density operators that are subparts of a quantum system, the joint quantum entropy is a measure of the total uncertainty or entropy of the joint system. It is written or , depending on the notation being used for the von Neumann entropy. Like other entropies, the joint quantum entropy is measured in bits, i.e. the logarithm is taken in base 2.

In physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is

In linear algebra, the Schmidt decomposition refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory, for example in entanglement characterization and in state purification, and plasticity.

Holevo's theorem is an important limitative theorem in quantum computing, an interdisciplinary field of physics and computer science. It is sometimes called Holevo's bound, since it establishes an upper bound to the amount of information that can be known about a quantum state. It was published by Alexander Holevo in 1973.

In quantum mechanics, notably in quantum information theory, fidelity is a measure of the "closeness" of two quantum states. It expresses the probability that one state will pass a test to identify as the other. The fidelity is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.

In quantum information theory, quantum relative entropy is a measure of distinguishability between two quantum states. It is the quantum mechanical analog of relative entropy.

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as

A Werner state is a × -dimensional bipartite quantum state density matrix that is invariant under all unitary operators of the form . That is, it is a bipartite quantum state that satisfies

In the theory of quantum communication, an amplitude damping channel is a quantum channel that models physical processes such as spontaneous emission. A natural process by which this channel can occur is a spin chain through which a number of spin states, coupled by a time independent Hamiltonian, can be used to send a quantum state from one location to another. The resulting quantum channel ends up being identical to an amplitude damping channel, for which the quantum capacity, the classical capacity and the entanglement assisted classical capacity of the quantum channel can be evaluated.

In quantum information theory, the idea of a typical subspace plays an important role in the proofs of many coding theorems. Its role is analogous to that of the typical set in classical information theory.

In quantum information theory, the Wehrl entropy, named after Alfred Wehrl, is a classical entropy of a quantum-mechanical density matrix. It is a type of quasi-entropy defined for the Husimi Q representation of the phase-space quasiprobability distribution. See for a comprehensive review of basic properties of classical, quantum and Wehrl entropies, and their implications in statistical mechanics.

The entropy of entanglement is a measure of the degree of quantum entanglement between two subsystems constituting a two-part composite quantum system. Given a pure bipartite quantum state of the composite system, it is possible to obtain a reduced density matrix describing knowledge of the state of a subsystem. The entropy of entanglement is the Von Neumann entropy of the reduced density matrix for any of the subsystems. If it is non-zero, i.e. the subsystem is in a mixed state, it indicates the two subsystems are entangled.

The min-entropy, in information theory, is the smallest of the Rényi family of entropies, corresponding to the most conservative way of measuring the unpredictability of a set of outcomes, as the negative logarithm of the probability of the most likely outcome. The various Rényi entropies are all equal for a uniform distribution, but measure the unpredictability of a nonuniform distribution in different ways. The min-entropy is never greater than the ordinary or Shannon entropy and that in turn is never greater than the Hartley or max-entropy, defined as the logarithm of the number of outcomes with nonzero probability.

Generalized relative entropy is a measure of dissimilarity between two quantum states. It is a "one-shot" analogue of quantum relative entropy and shares many properties of the latter quantity.

The entanglement of formation is a quantity that measures the entanglement of a bipartite quantum state.

References

  1. Kumar, Asutosh (2017). "Multiparty quantum mutual information: An alternative definition". Physical Review A. 96. arXiv: 1504.07176 . doi:10.1103/PhysRevA.96.012332. S2CID   85463610.