Tensor product of Hilbert spaces

Last updated

In mathematics, and in particular functional analysis, the tensor product of Hilbert spaces is a way to extend the tensor product construction so that the result of taking a tensor product of two Hilbert spaces is another Hilbert space. Roughly speaking, the tensor product is the metric space completion of the ordinary tensor product. This is an example of a topological tensor product. The tensor product allows Hilbert spaces to be collected into a symmetric monoidal category. [1]

Contents

Definition

Since Hilbert spaces have inner products, one would like to introduce an inner product, and therefore a topology, on the tensor product that arises naturally from those of the factors. Let and be two Hilbert spaces with inner products and respectively. Construct the tensor product of and as vector spaces as explained in the article on tensor products. We can turn this vector space tensor product into an inner product space by defining

and extending by linearity. That this inner product is the natural one is justified by the identification of scalar-valued bilinear maps on and linear functionals on their vector space tensor product. Finally, take the completion under this inner product. The resulting Hilbert space is the tensor product of and

Explicit construction

The tensor product can also be defined without appealing to the metric space completion. If and are two Hilbert spaces, one associates to every simple tensor product the rank one operator from to that maps a given as

This extends to a linear identification between and the space of finite rank operators from to The finite rank operators are embedded in the Hilbert space of Hilbert–Schmidt operators from to The scalar product in is given by

where is an arbitrary orthonormal basis of

Under the preceding identification, one can define the Hilbertian tensor product of and that is isometrically and linearly isomorphic to

Universal property

The Hilbert tensor product is characterized by the following universal property ( Kadison & Ringrose 1997 , Theorem 2.6.4):

Theorem   There is a weakly Hilbert–Schmidt mapping such that, given any weakly Hilbert–Schmidt mapping to a Hilbert space there is a unique bounded operator such that

A weakly Hilbert-Schmidt mapping is defined as a bilinear map for which a real number exists, such that

for all and one (hence all) orthonormal bases of and of

As with any universal property, this characterizes the tensor product H uniquely, up to isomorphism. The same universal property, with obvious modifications, also applies for the tensor product of any finite number of Hilbert spaces. It is essentially the same universal property shared by all definitions of tensor products, irrespective of the spaces being tensored: this implies that any space with a tensor product is a symmetric monoidal category, and Hilbert spaces are a particular example thereof.

Infinite tensor products

Two different definitions have historically been proposed for the tensor product of an arbitrary-sized collection of Hilbert spaces. Von Neumann's traditional definition simply takes the "obvious" tensor product: to compute , first collect all simple tensors of the form such that . The latter describes an pre-inner product through the polarization identity, so take the closed span of such simple tensors modulo that inner product's isotropy subspaces. This definition is almost never separable, in part because, in physical applications, "most" of the space describes impossible states. Modern authors typically use instead a definition due to Guichardet: to compute , first select a unit vector in each Hilbert space, and then collect all simple tensors of the form , in which only finitely-many are not . Then take the completion of these simple tensors. [2] [3]

Operator algebras

Let be the von Neumann algebra of bounded operators on for Then the von Neumann tensor product of the von Neumann algebras is the strong completion of the set of all finite linear combinations of simple tensor products where for This is exactly equal to the von Neumann algebra of bounded operators of Unlike for Hilbert spaces, one may take infinite tensor products of von Neumann algebras, and for that matter C*-algebras of operators, without defining reference states. [3] This is one advantage of the "algebraic" method in quantum statistical mechanics.

Properties

If and have orthonormal bases and respectively, then is an orthonormal basis for In particular, the Hilbert dimension of the tensor product is the product (as cardinal numbers) of the Hilbert dimensions.

Examples and applications

The following examples show how tensor products arise naturally.

Given two measure spaces and , with measures and respectively, one may look at the space of functions on that are square integrable with respect to the product measure If is a square integrable function on and is a square integrable function on then we can define a function on by The definition of the product measure ensures that all functions of this form are square integrable, so this defines a bilinear mapping Linear combinations of functions of the form are also in It turns out that the set of linear combinations is in fact dense in if and are separable. [4] This shows that is isomorphic to and it also explains why we need to take the completion in the construction of the Hilbert space tensor product.

Similarly, we can show that , denoting the space of square integrable functions is isomorphic to if this space is separable. The isomorphism maps to We can combine this with the previous example and conclude that and are both isomorphic to

Tensor products of Hilbert spaces arise often in quantum mechanics. If some particle is described by the Hilbert space and another particle is described by then the system consisting of both particles is described by the tensor product of and For example, the state space of a quantum harmonic oscillator is so the state space of two oscillators is which is isomorphic to Therefore, the two-particle system is described by wave functions of the form A more intricate example is provided by the Fock spaces, which describe a variable number of particles.

Related Research Articles

Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.

The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

<span class="mw-page-title-main">Quantum decoherence</span> Loss of quantum coherence

Quantum decoherence is the loss of quantum coherence, the process in which a system's behaviour changes from that which can be explained by quantum mechanics to that which can be explained by classical mechanics. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. A definite phase relationship is necessary to perform quantum computing on quantum information encoded in quantum states. Coherence is preserved under the laws of quantum physics.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space H. It is named after V. A. Fock who first introduced it in his 1932 paper "Konfigurationsraum und zweite Quantelung".

In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint operator on that space according to the rule

In mathematics and the foundations of quantum mechanics, the projective Hilbert space of a complex Hilbert space is the set of equivalence classes of non-zero vectors in , for the relation on given by

In linear algebra and functional analysis, the partial trace is a generalization of the trace. Whereas the trace is a scalar valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the relative state interpretation.

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible.

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.

<span class="mw-page-title-main">LOCC</span> Method in quantum computation and communication

LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed conditioned on the information received.

<span class="mw-page-title-main">Wigner's theorem</span> Theorem in the mathematical formulation of quantum mechanics

Wigner's theorem, proved by Eugene Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT are represented on the Hilbert space of states.

In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.

A decoherence-free subspace (DFS) is a subspace of a quantum system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary. DFSs can also be characterized as a special class of quantum error correcting codes. In this representation they are passive error-preventing codes since these subspaces are encoded with information that (possibly) won't require any active stabilization methods. These subspaces prevent destructive environmental interactions by isolating quantum information. As such, they are an important subject in quantum computing, where (coherent) control of quantum systems is the desired goal. Decoherence creates problems in this regard by causing loss of coherence between the quantum states of a system and therefore the decay of their interference terms, thus leading to loss of information from the (open) quantum system to the surrounding environment. Since quantum computers cannot be isolated from their environment and information can be lost, the study of DFSs is important for the implementation of quantum computers into the real world.

<span class="mw-page-title-main">SIC-POVM</span>

In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2)having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.

In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a quantum mechanical prediction for the system represented by the state. Knowledge of the quantum state and the quantum mechanical rules for the system's evolution in time, exhausts all that can be known about a quantum system.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

Given a Hilbert space with a tensor product structure a product numerical range is defined as a numerical range with respect to the subset of product vectors. In some situations, especially in the context of quantum mechanics product numerical range is known as local numerical range

In quantum information theory and quantum optics, the Schrödinger–HJW theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Erwin Schrödinger, Lane P. Hughston, Richard Jozsa and William Wootters. The result was also found independently by Nicolas Gisin, and by Nicolas Hadjisavvas building upon work by Ed Jaynes, while a significant part of it was likewise independently discovered by N. David Mermin. Thanks to its complicated history, it is also known by various other names such as the GHJW theorem, the HJW theorem, and the purification theorem.

References

  1. B. Coecke and E. O. Paquette, Categories for the practising physicist, in: New Structures for Physics, B. Coecke (ed.), Springer Lecture Notes in Physics, 2009. arXiv:0905.3010
  2. Nik Weaver (8 March 2020). Answer to Result of continuum tensor product of Hilbert spaces. MathOverflow . StackExchange.
  3. 1 2 Bratteli, O. and Robinson, D: Operator Algebras and Quantum Statistical Mechanics v.1, 2nd ed., page 144. Springer-Verlag, 2002.
  4. Kolmogorov, A. N.; Fomin, S. V. (1961) [1960]. Elements of the theory of functions and functional analysis. Vol. 2: Measure, the Lebesgue integral, and Hilbert space. Translated by Kamel, Hyman; Komm, Horace. Albany, NY: Graylock. p. 100, ex. 3. LCCN   57-4134.

Bibliography