In mathematics, nuclear operators between Banach spaces are a linear operators between Banach spaces in infinite dimensions that share some of the properties of their counter-part in finite dimension. In Hilbert spaces such operators are usually called trace class operators and one can define such things as the trace. In Banach spaces this is no longer possible for general nuclear operators, it is however possible for -nuclear operator via the Grothendieck trace theorem.
The general definition for Banach spaces was given by Grothendieck. This article presents both cases but concentrates on the general case of nuclear operators on Banach spaces.
An operator on a Hilbert space
is compact if it can be written in the form[ citation needed ]
where and and are (not necessarily complete) orthonormal sets. Here is a set of real numbers, the set of singular values of the operator, obeying if
The bracket is the scalar product on the Hilbert space; the sum on the right hand side must converge in norm.
An operator that is compact as defined above is said to be nuclear or trace-class if
A nuclear operator on a Hilbert space has the important property that a trace operation may be defined. Given an orthonormal basis for the Hilbert space, the trace is defined as
Obviously, the sum converges absolutely, and it can be proven that the result is independent of the basis[ citation needed ]. It can be shown that this trace is identical to the sum of the eigenvalues of (counted with multiplicity).
The definition of trace-class operator was extended to Banach spaces by Alexander Grothendieck in 1955.
Let and be Banach spaces, and be the dual of that is, the set of all continuous or (equivalently) bounded linear functionals on with the usual norm. There is a canonical evaluation map
(from the projective tensor product of and to the Banach space of continuous linear maps from to ). It is determined by sending and to the linear map An operator is called nuclear if it is in the image of this evaluation map. [1]
An operator
is said to be nuclear of order if there exist sequences of vectors with functionals with and complex numbers with
such that the operator may be written as
with the sum converging in the operator norm.
Operators that are nuclear of order 1 are called nuclear operators: these are the ones for which the series is absolutely convergent. Nuclear operators of order 2 are called Hilbert–Schmidt operators.
With additional steps, a trace may be defined for such operators when
The trace and determinant can no longer be defined in general in Banach spaces. However they can be defined for the so-called -nuclear operators via Grothendieck trace theorem.
More generally, an operator from a locally convex topological vector space to a Banach space is called nuclear if it satisfies the condition above with all bounded by 1 on some fixed neighborhood of 0.
An extension of the concept of nuclear maps to arbitrary monoidal categories is given by Stolz & Teichner (2012). A monoidal category can be thought of as a category equipped with a suitable notion of a tensor product. An example of a monoidal category is the category of Banach spaces or alternatively the category of locally convex, complete, Hausdorff spaces; both equipped with the projective tensor product. A map in a monoidal category is called thick if it can be written as a composition
for an appropriate object and maps where is the monoidal unit.
In the monoidal category of Banach spaces, equipped with the projective tensor product, a map is thick if and only if it is nuclear. [2]
Suppose that and are Hilbert-Schmidt operators between Hilbert spaces. Then the composition is a nuclear operator. [3]
Quantum decoherence is the loss of quantum coherence. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. A definite phase relationship is necessary to perform quantum computing on quantum information encoded in quantum states. Coherence is preserved under the laws of quantum physics.
In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators.
In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.
In linear algebra and functional analysis, the partial trace is a generalization of the trace. Whereas the trace is a scalar valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the relative state interpretation.
In mathematics, a Hilbert–Schmidt operator, named after David Hilbert and Erhard Schmidt, is a bounded operator that acts on a Hilbert space and has finite Hilbert–Schmidt norm
In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.
In mathematics, a Fredholm kernel is a certain type of a kernel on a Banach space, associated with nuclear operators on the Banach space. They are an abstraction of the idea of the Fredholm integral equation and the Fredholm operator, and are one of the objects of study in Fredholm theory. Fredholm kernels are named in honour of Erik Ivar Fredholm. Much of the abstract theory of Fredholm kernels was developed by Alexander Grothendieck and published in 1955.
In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.
In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products, but for general Banach spaces or locally convex topological vector spaces the theory is notoriously subtle.
In functional analysis and quantum measurement theory, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalisation of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalisation of quantum measurement described by PVMs.
In quantum information theory, an entanglement witness is a functional which distinguishes a specific entangled state from separable ones. Entanglement witnesses can be linear or nonlinear functionals of the density matrix. If linear, then they can also be viewed as observables for which the expectation value of the entangled state is strictly outside the range of possible expectation values of any separable state.
In physics, a quantum instrument is a mathematical abstraction of a quantum measurement, capturing both the classical and quantum outputs. It combines the concepts of measurement and quantum operation. It can be equivalently understood as a quantum channel that takes as input a quantum system and has as its output two systems: a classical system containing the outcome of the measurement and a quantum system containing the post-measurement state.
A decoherence-free subspace (DFS) is a subspace of a quantum system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary. DFSs can also be characterized as a special class of quantum error correcting codes. In this representation they are passive error-preventing codes since these subspaces are encoded with information that (possibly) won't require any active stabilization methods. These subspaces prevent destructive environmental interactions by isolating quantum information. As such, they are an important subject in quantum computing, where (coherent) control of quantum systems is the desired goal. Decoherence creates problems in this regard by causing loss of coherence between the quantum states of a system and therefore the decay of their interference terms, thus leading to loss of information from the (open) quantum system to the surrounding environment. Since quantum computers cannot be isolated from their environment and information can be lost, the study of DFSs is important for the implementation of quantum computers into the real world.
The min-entropy, in information theory, is the smallest of the Rényi family of entropies, corresponding to the most conservative way of measuring the unpredictability of a set of outcomes, as the negative logarithm of the probability of the most likely outcome. The various Rényi entropies are all equal for a uniform distribution, but measure the unpredictability of a nonuniform distribution in different ways. The min-entropy is never greater than the ordinary or Shannon entropy and that in turn is never greater than the Hartley or max-entropy, defined as the logarithm of the number of outcomes with nonzero probability.
Generalized relative entropy is a measure of dissimilarity between two quantum states. It is a "one-shot" analogue of quantum relative entropy and shares many properties of the latter quantity.
In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).
The strongest locally convex topological vector space (TVS) topology on the tensor product of two locally convex TVSs, making the canonical map continuous is called the projective topology or the π-topology. When is endowed with this topology then it is denoted by and called the projective tensor product of and
In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS without any need to extend definitions from real/complex-valued functions to -valued functions.
In mathematics, nuclear operators are an important class of linear operators introduced by Alexander Grothendieck in his doctoral dissertation. Nuclear operators are intimately tied to the projective tensor product of two topological vector spaces (TVSs).
In functional analysis, the Grothendieck trace theorem is an extension of Lidskii's theorem about the trace and the determinant of a certain class of nuclear operators on Banach spaces, the so-called -nuclear operators. The theorem was proven in 1966 by Alexander Grothendieck. Lidskii's theorem does not hold in general for Banach spaces.