This article may need to be rewritten to comply with Wikipedia's quality standards, as it is written like a maths textbook, not an encyclopedia article.(September 2017) |
In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.
For example, the spectral theory of compact operators on Banach spaces takes a form that is very similar to the Jordan canonical form of matrices. In the context of Hilbert spaces, a square matrix is unitarily diagonalizable if and only if it is normal. A corresponding result holds for normal compact operators on Hilbert spaces. More generally, the compactness assumption can be dropped. As stated above, the techniques used to prove results, e.g., the spectral theorem, in the non-compact case are typically different, involving operator-valued measures on the spectrum.
Some results for compact operators on Hilbert space will be discussed, starting with general properties before considering subclasses of compact operators.
Let be a Hilbert space and be the set of bounded operators on . Then, an operator is said to be a compact operator if the image of each bounded set under is relatively compact.
We list in this section some general properties of compact operators.
If X and Y are separable Hilbert spaces (in fact, X Banach and Y normed will suffice), then T : X → Y is compact if and only if it is sequentially continuous when viewed as a map from X with the weak topology to Y (with the norm topology). (See ( Zhu 2007 , Theorem 1.14, p.11), and note in this reference that the uniform boundedness will apply in the situation where F ⊆ X satisfies (∀φ ∈ Hom(X, K)) sup{x**(φ) = φ(x) : x} < ∞, where K is the underlying field. The uniform boundedness principle applies since Hom(X, K) with the norm topology will be a Banach space, and the maps x** : Hom(X,K) → K are continuous homomorphisms with respect to this topology.)
The family of compact operators is a norm-closed, two-sided, *-ideal in L(H). Consequently, a compact operator T cannot have a bounded inverse if H is infinite-dimensional. If ST = TS = I, then the identity operator would be compact, a contradiction.
If sequences of bounded operators Bn → B, Cn → C in the strong operator topology and T is compact, then converges to in norm. [1] For example, consider the Hilbert space with standard basis {en}. Let Pm be the orthogonal projection on the linear span of {e1, ..., em}. The sequence {Pm} converges to the identity operator I strongly but not uniformly. Define T by T is compact, and, as claimed above, PmT → IT = T in the uniform operator topology: for all x,
Notice each Pm is a finite-rank operator. Similar reasoning shows that if T is compact, then T is the uniform limit of some sequence of finite-rank operators.
By the norm-closedness of the ideal of compact operators, the converse is also true.
The quotient C*-algebra of L(H) modulo the compact operators is called the Calkin algebra, in which one can consider properties of an operator up to compact perturbation.
A bounded operator T on a Hilbert space H is said to be self-adjoint if T = T*, or equivalently,
It follows that ⟨Tx, x⟩ is real for every x ∈ H, thus eigenvalues of T, when they exist, are real. When a closed linear subspace L of H is invariant under T, then the restriction of T to L is a self-adjoint operator on L, and furthermore, the orthogonal complement L⊥ of L is also invariant under T. For example, the space H can be decomposed as the orthogonal direct sum of two T–invariant closed linear subspaces: the kernel of T, and the orthogonal complement (ker T)⊥ of the kernel (which is equal to the closure of the range of T, for any bounded self-adjoint operator). These basic facts play an important role in the proof of the spectral theorem below.
The classification result for Hermitian n × n matrices is the spectral theorem: If M = M*, then M is unitarily diagonalizable, and the diagonalization of M has real entries. Let T be a compact self-adjoint operator on a Hilbert space H. We will prove the same statement for T: the operator T can be diagonalized by an orthonormal set of eigenvectors, each of which corresponds to a real eigenvalue.
Theorem For every compact self-adjoint operator T on a real or complex Hilbert space H, there exists an orthonormal basis of H consisting of eigenvectors of T. More specifically, the orthogonal complement of the kernel of T admits either a finite orthonormal basis of eigenvectors of T, or a countably infinite orthonormal basis {en} of eigenvectors of T, with corresponding eigenvalues {λn} ⊂ R, such that λn → 0.
In other words, a compact self-adjoint operator can be unitarily diagonalized. This is the spectral theorem.
When H is separable, one can mix the basis {en} with a countable orthonormal basis for the kernel of T, and obtain an orthonormal basis {fn} for H, consisting of eigenvectors of T with real eigenvalues {μn} such that μn → 0.
Corollary For every compact self-adjoint operator T on a real or complex separable infinite-dimensional Hilbert space H, there exists a countably infinite orthonormal basis {fn} of H consisting of eigenvectors of T, with corresponding eigenvalues {μn} ⊂ R, such that μn → 0.
Let us discuss first the finite-dimensional proof. Proving the spectral theorem for a Hermitian n × n matrix T hinges on showing the existence of one eigenvector x. Once this is done, Hermiticity implies that both the linear span and orthogonal complement of x (of dimension n − 1) are invariant subspaces of T. The desired result is then obtained by induction for .
The existence of an eigenvector can be shown in (at least) two alternative ways:
Note. In the finite-dimensional case, part of the first approach works in much greater generality; any square matrix, not necessarily Hermitian, has an eigenvector. This is simply not true for general operators on Hilbert spaces. In infinite dimensions, it is also not immediate how to generalize the concept of the characteristic polynomial.
The spectral theorem for the compact self-adjoint case can be obtained analogously: one finds an eigenvector by extending the second finite-dimensional argument above, then apply induction. We first sketch the argument for matrices.
Since the closed unit sphere S in R2n is compact, and f is continuous, f(S) is compact on the real line, therefore f attains a maximum on S, at some unit vector y. By Lagrange's multiplier theorem, y satisfies for some λ. By Hermiticity, Ty = λy.
Alternatively, let z ∈ Cn be any vector. Notice that if a unit vector y maximizes ⟨Tx, x⟩ on the unit sphere (or on the unit ball), it also maximizes the Rayleigh quotient:
Consider the function:
By calculus, h′(0) = 0, i.e.,
Define:
After some algebra the above expression becomes (Re denotes the real part of a complex number)
But z is arbitrary, therefore Ty − my = 0. This is the crux of proof for spectral theorem in the matricial case.
Note that while the Lagrange multipliers generalize to the infinite-dimensional case, the compactness of the unit sphere is lost. This is where the assumption that the operator T be compact is useful.
Claim If T is a compact self-adjoint operator on a non-zero Hilbert space H and then m(T) or −m(T) is an eigenvalue of T.
If m(T) = 0, then T = 0 by the polarization identity, and this case is clear. Consider the function
Replacing T by −T if necessary, one may assume that the supremum of f on the closed unit ball B ⊂ H is equal to m(T) > 0. If f attains its maximum m(T) on B at some unit vector y, then, by the same argument used for matrices, y is an eigenvector of T, with corresponding eigenvalue λ = ⟨λy, y⟩ = ⟨Ty, y⟩ = f(y) = m(T).
By the Banach–Alaoglu theorem and the reflexivity of H, the closed unit ball B is weakly compact. Also, the compactness of T means (see above) that T : X with the weak topology → X with the norm topology is continuous [ disputed – discuss ]. These two facts imply that f is continuous on B equipped with the weak topology, and f attains therefore its maximum m on B at some y ∈ B. By maximality, which in turn implies that y also maximizes the Rayleigh quotient g(x) (see above). This shows that y is an eigenvector of T, and ends the proof of the claim.
Note. The compactness of T is crucial. In general, f need not be continuous for the weak topology on the unit ball B. For example, let T be the identity operator, which is not compact when H is infinite-dimensional. Take any orthonormal sequence {yn}. Then yn converges to 0 weakly, but lim f(yn) = 1 ≠ 0 = f(0).
Let T be a compact operator on a Hilbert space H. A finite (possibly empty) or countably infinite orthonormal sequence {en} of eigenvectors of T, with corresponding non-zero eigenvalues, is constructed by induction as follows. Let H0 = H and T0 = T. If m(T0) = 0, then T = 0 and the construction stops without producing any eigenvector en. Suppose that orthonormal eigenvectors e0, ..., en − 1 of T have been found. Then En := span(e0, ..., en − 1) is invariant under T, and by self-adjointness, the orthogonal complement Hn of En is an invariant subspace of T. Let Tn denote the restriction of T to Hn. If m(Tn) = 0, then Tn = 0, and the construction stops. Otherwise, by the claim applied to Tn, there is a norm one eigenvector en of T in Hn, with corresponding non-zero eigenvalue λn = ± m(Tn).
Let F = (span{en})⊥, where {en} is the finite or infinite sequence constructed by the inductive process; by self-adjointness, F is invariant under T. Let S denote the restriction of T to F. If the process was stopped after finitely many steps, with the last vector em−1, then F= Hm and S = Tm = 0 by construction. In the infinite case, compactness of T and the weak-convergence of en to 0 imply that Ten = λnen → 0, therefore λn → 0. Since F is contained in Hn for every n, it follows that m(S) ≤ m({Tn}) = |λn| for every n, hence m(S) = 0. This implies again that S = 0.
The fact that S = 0 means that F is contained in the kernel of T. Conversely, if x ∈ ker(T) then by self-adjointness, x is orthogonal to every eigenvector {en} with non-zero eigenvalue. It follows that F = ker(T), and that {en} is an orthonormal basis for the orthogonal complement of the kernel of T. One can complete the diagonalization of T by selecting an orthonormal basis of the kernel. This proves the spectral theorem.
A shorter but more abstract proof goes as follows: by Zorn's lemma, select U to be a maximal subset of H with the following three properties: all elements of U are eigenvectors of T, they have norm one, and any two distinct elements of U are orthogonal. Let F be the orthogonal complement of the linear span of U. If F ≠ {0}, it is a non-trivial invariant subspace of T, and by the initial claim, there must exist a norm one eigenvector y of T in F. But then U∪ {y} contradicts the maximality of U. It follows that F = {0}, hence span(U) is dense in H. This shows that U is an orthonormal basis of H consisting of eigenvectors of T.
If T is compact on an infinite-dimensional Hilbert space H, then T is not invertible, hence σ(T), the spectrum of T, always contains 0. The spectral theorem shows that σ(T) consists of the eigenvalues {λn} of T and of 0 (if 0 is not already an eigenvalue). The set σ(T) is a compact subset of the complex numbers, and the eigenvalues are dense in σ(T).
Any spectral theorem can be reformulated in terms of a functional calculus. In the present context, we have:
Theorem. Let C(σ(T)) denote the C*-algebra of continuous functions on σ(T). There exists a unique isometric homomorphism Φ : C(σ(T)) → L(H) such that Φ(1) = I and, if f is the identity function f(λ) = λ, then Φ(f) = T. Now we may define (clearly this would hold when is polynomial). Then it also holds, that σ(g(T)) = g(σ(T)).
The functional calculus map Φ is defined in a natural way: let {en} be an orthonormal basis of eigenvectors for H, with corresponding eigenvalues {λn}; for f ∈ C(σ(T)), the operator Φ(f), diagonal with respect to the orthonormal basis {en}, is defined by setting for every n. Since Φ(f) is diagonal with respect to an orthonormal basis, its norm is equal to the supremum of the modulus of diagonal coefficients,
The other properties of Φ can be readily verified. Conversely, any homomorphism Ψ satisfying the requirements of the theorem must coincide with Φ when f is a polynomial. By the Weierstrass approximation theorem, polynomial functions are dense in C(σ(T)), and it follows that Ψ = Φ. This shows that Φ is unique.
The more general continuous functional calculus can be defined for any self-adjoint (or even normal, in the complex case) bounded linear operator on a Hilbert space. The compact case described here is a particularly simple instance of this functional calculus.
Consider an Hilbert space H (e.g. the finite-dimensional Cn), and a commuting set of self-adjoint operators. Then under suitable conditions, it can be simultaneously (unitarily) diagonalized. Viz., there exists an orthonormal basis Q consisting of common eigenvectors for the operators — i.e.,
Lemma — Suppose all the operators in are compact. Then every closed non-zero -invariant sub-space has a common eigenvector for .
Case I: all the operators have each exactly one eigenvalue on . Take any of unit length. It is a common eigenvector.
Case II: there is some operator with at least 2 eigenvalues on and let . Since T is compact and α is non-zero, we have is a finite-dimensional (and therefore closed) non-zero -invariant sub-space (because the operators all commute with T, we have for and , that ). In particular, since α is just one of the eigenvalues of on , we definitely have . Thus we could in principle argue by induction over dimension, yielding that has a common eigenvector for .
Theorem 1 — If all the operators in are compact then the operators can be simultaneously (unitarily) diagonalized.
The following set is partially ordered by inclusion. This clearly has the Zorn property. So taking Q a maximal member, if Q is a basis for the whole Hilbert space H, we are done. If this were not the case, then letting , it is easy to see that this would be an -invariant non-trivial closed subspace; and thus by the lemma above, therein would lie a common eigenvector for the operators (necessarily orthogonal to Q). But then there would then be a proper extension of Q within P; a contradiction to its maximality.
Theorem 2 — If there is an injective compact operator in ; then the operators can be simultaneously (unitarily) diagonalized.
Fix compact injective. Then we have, by the spectral theory of compact symmetric operators on Hilbert spaces: where is a discrete, countable subset of positive real numbers, and all the eigenspaces are finite-dimensional. Since a commuting set, we have all the eigenspaces are invariant. Since the operators restricted to the eigenspaces (which are finite-dimensional) are automatically all compact, we can apply Theorem 1 to each of these, and find orthonormal bases Qσ for the . Since T0 is symmetric, we have that is a (countable) orthonormal set. It is also, by the decomposition we first stated, a basis for H.
Theorem 3 — If H a finite-dimensional Hilbert space, and a commutative set of operators, each of which is diagonalisable; then the operators can be simultaneously diagonalized.
Case I: all operators have exactly one eigenvalue. Then any basis for H will do.
Case II: Fix an operator with at least two eigenvalues, and let so that is a symmetric operator. Now let α be an eigenvalue of . Then it is easy to see that both: are non-trivial -invariant subspaces. By induction over dimension we have that there are linearly independent bases Q1, Q2 for the subspaces, which demonstrate that the operators in can be simultaneously diagonalisable on the subspaces. Clearly then demonstrates that the operators in can be simultaneously diagonalised.
Notice we did not have to directly use the machinery of matrices at all in this proof. There are other versions which do.
We can strengthen the above to the case where all the operators merely commute with their adjoint; in this case we remove the term "orthogonal" from the diagonalisation. There are weaker results for operators arising from representations due to Weyl–Peter. Let G be a fixed locally compact hausdorff group, and (the space of square integrable measurable functions with respect to the unique-up-to-scale Haar measure on G). Consider the continuous shift action:
Then if G were compact then there is a unique decomposition of H into a countable direct sum of finite-dimensional, irreducible, invariant subspaces (this is essentially diagonalisation of the family of operators ). If G were not compact, but were abelian, then diagonalisation is not achieved, but we get a unique continuous decomposition of H into 1-dimensional invariant subspaces.
The family of Hermitian matrices is a proper subset of matrices that are unitarily diagonalizable. A matrix M is unitarily diagonalizable if and only if it is normal, i.e., M*M = MM*. Similar statements hold for compact normal operators.
Let T be compact and T*T = TT*. Apply the Cartesian decomposition to T: define
The self-adjoint compact operators R and J are called the real and imaginary parts of T, respectively. That T is compact implies that T* and, consequently, R and J are compact. Furthermore, the normality of T implies that R and J commute. Therefore they can be simultaneously diagonalized, from which follows the claim.
A hyponormal compact operator (in particular, a subnormal operator) is normal.
The spectrum of a unitary operator U lies on the unit circle in the complex plane; it could be the entire unit circle. However, if U is identity plus a compact perturbation, U has only a countable spectrum, containing 1 and possibly, a finite set or a sequence tending to 1 on the unit circle. More precisely, suppose U = I + C where C is compact. The equations UU* = U*U = I and C = U − I show that C is normal. The spectrum of C contains 0, and possibly, a finite set or a sequence tending to 0. Since U = I + C, the spectrum of U is obtained by shifting the spectrum of C by 1.
Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.
The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.
In linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.
In mathematics, a self-adjoint operator on a complex vector space V with inner product is a linear map A that is its own adjoint. That is, for all ∊ V. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its Hermitian adjoint N*, that is: NN* = N*N.
In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators.
In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral equations. They are named in honour of Erik Ivar Fredholm. By definition, a Fredholm operator is a bounded linear operator T : X → Y between two Banach spaces with finite-dimensional kernel and finite-dimensional (algebraic) cokernel , and with closed range . The last condition is actually redundant.
In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used in the reproducing kernel Hilbert space theory where it characterizes a symmetric positive-definite kernel as a reproducing kernel.
In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.
In functional analysis, a branch of mathematics, a compact operator is a linear operator , where are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of . Such an operator is necessarily a bounded operator, and so continuous. Some authors require that are Banach, but the definition can be extended to more general spaces.
In functional analysis, a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Specifically, a Hilbert space of functions from a set is an RKHS if, for each , there exists a function such that for all ,
In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.
In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus, which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function s → s2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential
In mathematics, a Hilbert–Schmidt operator, named after David Hilbert and Erhard Schmidt, is a bounded operator that acts on a Hilbert space and has finite Hilbert–Schmidt norm
In operator theory, Naimark's dilation theorem is a result that characterizes positive operator valued measures. It can be viewed as a consequence of Stinespring's dilation theorem.
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring. It is a fundamental concept in all areas of quantum physics.
Hilbert C*-modules are mathematical objects that generalise the notion of Hilbert spaces (which are themselves generalisations of Euclidean space), in that they endow a linear space with an "inner product" that takes values in a C*-algebra.
In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.
This is a glossary for the terminology in a mathematical field of functional analysis.