Strictly singular operator

Last updated

In functional analysis, a branch of mathematics, a strictly singular operator is a bounded linear operator between normed spaces which is not bounded below on any infinite-dimensional subspace.

Functional analysis branch of mathematical analysis concerned with infinite-dimensional topological vector spaces, often spaces of functions

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations.

Mathematics field of study

Mathematics includes the study of such topics as quantity, structure, space, and change.

Contents

Definitions.

Let X and Y be normed linear spaces, and denote by B(X,Y) the space of bounded operators of the form . Let be any subset. We say that T is bounded below on whenever there is a constant such that for all , the inequality holds. If A=X, we say simply that T is bounded below.

Normed vector space vector space on which a norm is defined

In mathematics, a normed vector space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of distance in the real world. A norm is a real-valued function defined on the vector space that has the following properties:

  1. The zero vector, 0, has zero length; every other vector has a positive length.
  2. Multiplying a vector by a positive number changes its length without changing its direction. Moreover,
  3. The triangle inequality holds. That is, taking norms as distances, the distance from point A through B to C is never shorter than going directly from A to C, or the shortest distance between any two points is a straight line.

Now suppose X and Y are Banach spaces, and let and denote the respective identity operators. An operator is called inessential whenever is a Fredholm operator for every . Equivalently, T is inessential if and only if is Fredholm for every . Denote by the set of all inessential operators in .

In mathematics, a Fredholm operator is an operator that arises in the Fredholm theory of integral equations. It is named in honour of Erik Ivar Fredholm.

An operator is called strictly singular whenever it fails to be bounded below on any infinite-dimensional subspace of X. Denote by the set of all strictly singular operators in . We say that is finitely strictly singular whenever for each there exists such that for every subspace E of X satisfying , there is such that . Denote by the set of all finitely strictly singular operators in .

Let denote the closed unit ball in X. An operator is compact whenever is a relatively norm-compact subset of Y, and denote by the set of all such compact operators.

Properties.

Strictly singular operators can be viewed as a generalization of compact operators, as every compact operator is strictly singular. These two classes share some important properties. For example, if X is a Banach space and T is a strictly singular operator in B(X) then its spectrum satisfies the following properties: (i) the cardinality of is at most countable; (ii) (except possibly in the trivial case where X is finite-dimensional); (iii) zero is the only possible limit point of ; and (iv) every nonzero is an eigenvalue. This same "spectral theorem" consisting of (i)-(iv) is satisfied for inessential operators in B(X).

In functional analysis, a branch of mathematics, a compact operator is a linear operator L from a Banach space X to another Banach space Y, such that the image under L of any bounded subset of X is a relatively compact subset of Y. Such an operator is necessarily a bounded operator, and so continuous.

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.

In mathematics, particularly in functional analysis, the spectrum of a bounded operator is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number λ is said to be in the spectrum of a bounded linear operator T if λI − T is not invertible, where I is the identity operator. The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics.

Classes , , , and all form norm-closed operator ideals. This means, whenever X and Y are Banach spaces, the component spaces , , , and are each closed subspaces (in the operator norm) of B(X,Y), such that the classes are invariant under composition with arbitrary bounded linear operators.

In functional analysis, a branch of mathematics, an operator ideal is a special kind of class of continuous linear operators between Banach spaces. If an operator belongs to an operator ideal , then for any operators and which can be composed with as , then is class as well. Additionally, in order for to be an operator ideal, it must contain the class of all finite-rank Banach space operators.

In general, we have , and each of the inclusions may or may not be strict, depending on the choices of X and Y.

Examples.

Every bounded linear map , for , , is strictly singular. Here, and are sequence spaces. Similarly, every bounded linear map and , for , is strictly singular. Here is the Banach space of sequences converging to zero. This is a corollary of Pitt's theorem, which states that such T, for q < p, are compact.

In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field K of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in K, and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication. All sequence spaces are linear subspaces of this space. Sequence spaces are typically equipped with a norm, or at least the structure of a topological vector space.

If then the formal identity operator is finitely strictly singular but not compact. If then there exist "Pelczynski operators" in which are uniformly bounded below on copies of , , and hence are strictly singular but not finitely strictly singular. In this case we have . However, every inessential operator with codomain is strictly singular, so that . On the other hand, if X is any separable Banach space then there exists a bounded below operator any of which is inessential but not strictly singular. Thus, in particular, for all .

Duality.

The compact operators form a symmetric ideal, which means if and only if . However, this is not the case for classes , , or . To establish duality relations, we will introduce additional classes.

If Z is a closed subspace of a Banach space Y then there exists a "canonical" surjection defined via the natural mapping . An operator is called strictly cosingular whenever given an infinite-dimensional closed subspace Z of Y, the map fails to be surjective. Denote by the subspace of strictly cosingular operators in B(X,Y).

Theorem 1. Let X and Y be Banach spaces, and let . If T* is strictly singular (resp. strictly cosingular) then T is strictly cosingular (resp. strictly singular).

Note that there are examples of strictly singular operators whose adjoints are neither strictly singular nor strictly cosingular (see Plichko, 2004). Similarly, there are strictly cosingular operators whose adjoints are not strictly singular, e.g. the inclusion map . So is not in full duality with .

Theorem 2. Let X and Y be Banach spaces, and let . If T* is inessential then so is T.

Related Research Articles

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

In the area of mathematics known as functional analysis, a reflexive space is a Banach space that coincides with the continuous dual of its continuous dual space, both as linear space and as topological space. Reflexive Banach spaces are often characterized by their geometric properties.

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

In mathematics, especially functional analysis, a self-adjoint element of a C*-algebra is called positive if its spectrum consists of non-negative real numbers. Moreover, an element of a C*-algebra is positive if and only if there is some in such that . A positive element is self-adjoint and thus normal.

In functional analysis, a bounded linear operator is a linear transformation L between normed vector spaces X and Y for which the ratio of the norm of L(v) to that of v is bounded above by the same number, over all non-zero vectors v in X. In other words, there exists some such that for all v in X

Approximation property

In mathematics, specifically functional analysis, a Banach space is said to have the approximation property (AP), if every compact operator is a limit of finite-rank operators. The converse is always true.

In mathematics, the Riesz–Thorin theorem, often referred to as the Riesz–Thorin interpolation theorem or the Riesz–Thorin convexity theorem, is a result about interpolation of operators. It is named after Marcel Riesz and his student G. Olof Thorin.

The spectrum of a linear operator that operates on a Banach space consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:

Blowing up in algebraic geometry, a transformation on an algebraic variety or scheme, wherein a closed subvariety is replaced with the space of lines passing through it (in the case of a point, a projective space), commonly used to resolve singularities

In mathematics, blowing up or blowup is a type of geometric transformation which replaces a subspace of a given space with all the directions pointing out of that subspace. For example, the blowup of a point in a plane replaces the point with the projectivized tangent space at that point. The metaphor is that of zooming in on a photograph to enlarge part of the picture, rather than referring to an explosion.

In mathematics, a Fredholm kernel is a certain type of a kernel on a Banach space, associated with nuclear operators on the Banach space. They are an abstraction of the idea of the Fredholm integral equation and the Fredholm operator, and are one of the objects of study in Fredholm theory. Fredholm kernels are named in honour of Erik Ivar Fredholm. Much of the abstract theory of Fredholm kernels was developed by Alexander Grothendieck and published in 1955.

In functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In functional analysis, the dual norm is a measure of the "size" of each continuous linear functional defined on a normed vector space.

In the field of mathematical analysis, an interpolation space is a space which lies "in between" two other Banach spaces. The main applications are in Sobolev spaces, where spaces of functions that have a noninteger number of derivatives are interpolated from the spaces of functions with integer number of derivatives.

References

Aiena, Pietro, Fredholm and Local Spectral Theory, with Applications to Multipliers (2004), ISBN   1-4020-1830-4.

Plichko, Anatolij, "Superstrictly Singular and Superstrictly Cosingular Operators," North-Holland Mathematics Studies 197 (2004), pp239-255.